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Abstract.Let 14 be an arbitrary sustemof partial (non-linear) differential equa-
tions.Higher infinitesimal symmetriesof 14 maybeinterpretedas vectorfieldson
the (manifold) Sol14 of all local solutionsof this system.Thepaperdealswith
constructionof differential operatorsof arbitrary orderson Sol14. Theseapproa-
chesto constructionof the theory of theseoperators,geometricandfunctional
are presented,and their equivalenceis proved when 14 is the trivial equation.
Coincidenceof ~rextrinsic,and ~rintrinsic,geometricsecondaryoperatorsis proved
for an arbitrary system14. It is shown that eachgeometricsecondaryoperator
may be approximatedby a sum of compositionsof evolution differentiations
with any possibleaccuracy, a description of geometricsecondaryoperators in
local coordinatesis also given. Theseresultsareobtainedby studyingthegeometry
ofinfinite jetsandinfinitely prolongedequations.

Lt’ffRODUCHON

It is well known that ordinary differential equationsdescribingclassicalparti-

cles are characteristicsfor partial differential equationsdescribingcorresponding
quantum particles. This is the basic line connecting classical and quantum
mechanicsof particles. In particular,the quantizationproblem may be viewed

as the problem to reconstructpartial differential equationif ordinaryequations
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of characteristicsare known.

Having this in mind one can expect that classical field theory is similarly
connectedwith the quantumfield theory. Assumingthis oneis forced to postu-

late the existence of such equations,of genuineequationsof quantumfields
whose characteristicsare describedby partial differential equationsof classical

fields. Thise hypoteticalequations,as well as the hypoteticaloperatorsin their
left-hand sides,may be called secondaryones,or more speculatively,secondary

quantized,since partial differential operatorsmay be consideredas quantized

ordinary operatorsand in quantum field theory the quantizationprocessstarts
with partial equations,i.e. quantizedequations.Thus our problemis to find the
rigorousmathematicalnotion of secondarydifferential operators.

In fact, nowadayswe know that there exist other secondarynotions. For
example,higher infinitesimal symmetriesof partial differential equationsare

nothing but secondary vector fields. Similarly, conservationlaws for partial
differential equationsmay be interpretedas secondarydifferentail forms,etc.

In other words, we observethe existenceof the next level differential calculus
which may be calledsecondary.

Our interest in the secondarydifferential calculusarisesfrom the hypothesis

that it is the unique natural languagefor the quantumfield theory in the same
senseas the classicaldifferential calculusis natural for the classicalfield theory.
Further motivations and general description of the Secondary Calculus the

readermay find in [lii, [2}.

In this paperwe answerthe questionwhat are secondarydifferential operators.
For simplicity only scalaroperatorsare consideredhere.Our main tool is the

geometry of infinite jet manifolds and infinitely prolonged partial differential

equationsin thespirit of [3].
The main resultsof this paperwas annuncedin [4].

§ 1. PRELIMINARIES

In this paper we deal with the category of smoothmanifolds and smooth
maps.

Somenecessarynotions and results from [5], [3] are given in this sectionin
theconvenientform.

1.1. Jet space. Let N be a smoothmanifold, dim N = m + n. The classof n-

-dimensional submanifoldsL C N mutually tangent to each others with the
order k tangency at point xEN will be called the k-jet of an n-dimensional
submanifoldat x anddenoted[L]~.

Set
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N”(x)={[L]~jdimL=n,xEL} and N,~= IJ N~(x).

The set N~has a naturalstructureof a smoothmanifold. For k~’I thereare
projections~k,1 :N~—÷N,~,

¶k,l([LJ~) = [L]~.

If L C N thenthereis a smoothmap

Jk(L) :L-÷N~,Jk(L)(x)=[L}X.

Clearly ~k,l OJic(L)=J
1(L). Theinverselimit of thechainof maps

will be denotedby N,. Denotethe limit of the mapsjk(L), k —* on by j~,(L)
L —+ N~and the naturalprojectionN —~ N~by ~

The set N~, 0 ~ k c~no is called the manifold of k-jets of n-dimensional

submanifoldsof N. Then we set F,,,(N) = C~°(N~)and F(N) denotesthe direct
limit of the chainof maps

~ ~,k-I~ ~

Let M’
1 be an n-dimensionalmanifold and ¶ :E—~M’1a submersion,dimE=

= m + n. Then the set of k-jets of imagesof local sectionsof this submersion

forms an open set ~ in E~(called the manifold of k-jets of the bundle ¶ if

¶ is a bundle). The set of local sectionsof a submersion¶ will be denotedby
F

10~(~J)andU1 denotesthe domainofs fors E r’10~(U.We set

~ =jk(L) os,

whereL = s(U5), and

~k= ¶ °~k,0’ F~(=C~(J’~(1T)),0~k~°°,F(~J)=iimdirI~J).

Let U = V’
1 x Urn, where V’1 (resp. Um) be a domain in JR” (resp.in ~ and

(q,p), where q (qi,..., q~),p = (p3, .. . ,pm), a correspondingcoordinate

system.Then on J~’ct, 0 ~ k ‘~ oc, where a : U —+ V’~is the naturalprojection,
the coordinatesystemarises:

q
1,p~

j=l,
2,...,n;i=l,2,...,m;u=(ir..., i

0),ip..., ~
=iI+...,+in.
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Functionsp’~areuniquely determinedby the following property

~uI
5i

= ~1aq1 . . .

wheresEf(a) is definedbyp’ =s’(q).

Every diffeomorphism f: U —÷ U’ C N naturally induces diffeomorphisms

f(k) : J
1’ci —÷ due to which the abovecoordinateson Jlecx are transferred

to im Below they are called the canonicallocal coordinatesand thedomain
im f(k with thesecoordiantesis calleda canonicalchart.

Let A’(M) denote the C~(M)-moduleof smooth differential i-forms on a
manifoldM. We set

CA’(N~)={w EA1(N~)4(L’1)*w = 0 for any L’1 C N},

CA1(Jl9)={wEA1(JtC~Djjk(s)*w=0 forany sEfj~(~I)}.

Clearly,

¶k*l(CAi(N,~))cCA1(N~)and ¶~‘
1(CA’(J’~D)CCA’(J’9J),

which allows oneto definesubmodules

CA(N,) C A’(N,) and CA~J)C A~J),

where

A’(N,) k.~.dir A~(N~)and A’(lI) =lim dir Ai(J~~¶),

CA’(N,) =,~imdirCA~(N~)and CA’(1)~n dir CA’(J”~J).

ThesubmoduleCA’(N,~)C A
1(N~)is of constantrank and dualizing determi-

nesthedistribution0k ~ C 1è~(Nrn)called the Cartandistribution. If 0 EN~

and 0 = {Ok}, where E Nm~~k,I~0k~ = 0~,then we determinethe tangentspace
1(N,) as the inverselimit of thechainof linear maps

d~k,k_1~~~k_l~rn ) ~

Since dlk,k_1(Cok) C Cokl, there is definedthe inverselimit, C
0, of the chain

d~kk—I )c0 —+... .

k k—i

The distribution C (N) : 0 —+ C0 is called the Cartandistribution on N,. The
module CA

1(N,) annihilatingthe Cartandistribution within the canonicalchart
is generatedby theforms
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U(p~)= dp~—Ep~÷
1dq1,

wherea + l~= (i 1 ~ i~+ I ~ ia), a ~ k.

The maximal integral manifoldsof the Cartandistribution N is of dimension
n and locally is of theform im j,,.(L).

1.2. Differential equations. In what follows a systems of non-linear partial

differntial equationsis consideredas a closedsubmanifoldin ~ (in JkID. Here
n is the numberof independentvariablesm the numberof dependentvariables,
k the order of the system. Insteadof <<the systemof equations>>we will just

say <<equation>>.
Let 14 C N” (Jk~J)be an equation.A submanifoldL” C N (s C l’~(1D)is called

its solutions if im jk(L) C 14 (im ‘k S C 14). The set of solutions is denotedby
Sol q.

Define the i-th prolongation14~C N~’ (14k C jk+ ~) of theequation14 CN~

(q C J”1j) assumingthat [L]’ c if and only if imjk(L) is tangentto 14 at

jk(L)(X) with tangencyof order i. Then ¶~,.(14ì)C 14, for I ~ r. Theinverselimit

of the system

1,i

~1+1~~~’

is denotedby 14,.,.
The equation 14 called a formally integrableequation,if each its prolonga-

tion is a smooth submanifold in ~ 1 (in jk + ‘1~) and projections

+ ~+ 1,k + : 1 are vector bundles.Below we only deal with
formally integrableequations.

We set

F(q) =F(IV) q,,(F(~J)q,,), A~(q)= A~(N) q,, (=A~(~)q,.,.)

and

CA~(q)=CA~(N,)jq,.,.~

In case 14 C J~~ithe subalgebra(~J,.,. ~,,.Y”(C°~(M))in F(q) is identified with
C~(M),and thesubspace(~1,.. 14,,.)* (A~(M))in A~(q)with A~(M).Therestriction
of the Cartandistribution on 14,,. is denotedby C(11).

1.3. Symmetriesof differential equations. Denote by D(F(q)) the set of all

differentiationsof the algebraF(q) (i.e. the set of all vector on 14). The Lie
derivativeof the form ~ E A~(q)along the vectorfield X is denotedby X(w).
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We set

Dc(F(tI)) ={X ED(F(14))IX(CA’(q)) C CA1(~)},

CD(F(q)) ={XED(F(q))lXJCAI(r~j)=0}.

The fields XEDc(F(14)) are called C-fields and the fields XE CD(F(q)) are
calledtrivial C-fields.

We needthe following propertiesof C-fields(see[3], [5]):
I) DC(F(14)) is a subalgebrain the Lie algebraD(F(q));

2) CD(F(q)) is theideal in theLie algebraDc(F(14));

3) XEDc(F(q)) if andonly if[X, CD(F(q))] C CD(F(q)).
The quotient algebra Sym 14 = Dc(F(t4))/CD(F(q)) is called the algebraof

intrinsic infinitesimal symmetriesof ~.

If q = N~(= J ¶) thenwewrite ~c(N) (,c (SD) insteadof Sym14.

4) Any C-field XEDc(F(14))is a restrictionon 14 of a C-field YEDC(F(N));

5) XECD(F(q)) if and only if a C-field YEDC(F(N))such thatX= Yj~,,.

canbe restrictedon im J,,.,(L’1) for any Ii’ C N.

Given a bundle ¶ :E —+M’1 any vector field X on M’1 determinesthevector
field X E CD(F(q)) by the formula

X(f)(/(s) (x)) = X(/,,.,(s)* f)(x),

wherefEF(~),sE r~(1l),xEM.
Let q

1,p,be canonicallocal coordinateson J9. Then

Denotethe operators— by D..
aq1 /

PutD(M) for the setof all thevectorfields onM.
~ a

If X = — ED(M), thenX = ~ . D1.
i=1 aq, i=1

1.4. C-differential operators. The algebra F(q) is naturally filtered by sub-

algebrasF(14), where I~(q)is the imageof C~(14jk~under~ (here k is the
order of 14). An IR-linear map ~ : F(q) —+F(q) is called a linear differential
operatorof order ~ 1 if

1) Es(F(14))CI~~1(q),/=j(i);

2) ~fo~ .(~f1(t~). . .) = 0 for any f0,. . . ,f1EF(q), where &f(1~)=[~,f].
Thedetailsseein [3].

Differential operatorsfrom a filtered F(q)-moduleP into a filtered f(~)-
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-moduleQ aresimilarly defined.
The set of all linear differential operators(of order ~ 1) from F(q) into itself

is denotedby Diff(F(q)) (Diff1 (F(q))).
An operatorA E Diff(F(IV)) is a C-differentialoperatorif for any submanifold

L’1 C N the operatorA admits the restrictiononto the submanifoldim j,~.,(L’1)C
CN,.

An operatorA E Diff (F(q)) is a C-differential operatorif thereis a C-differen-
tial operatorA’ E Diff(F(IV)) suchthatA = A’ 1~•

The F(q) algebra of C-differential operatorsis denotedby C Diff(F(q)).
Thefollowing statementshold (see[5]):

1) The algebra of C-differential operators C Diff(F(q)) is generatedby

C-differential operatorsof order ~ 1

2) If 14 C jk~j then the algebra C Diff(F(q)) is generatedby C-differential

operatorsof the form X ~ whereXE D(M), andfunctions p EF(t~1).
The most importantexampleof C-differential operatorsare thoseof universal

linearization (see [5]). Recall that if P is an F(1~)-moduleof smoothsectionsof

a finite-dimensionalvectorbundle overJ’~Jandp EP, then in canonicalcoordi-
natesq1, p~,the correspondinguniversal linearizationoperatorl~,is of the form

aF aF

V~~_LoD1 ° rn °o ap ~,

p

aF
L.... 3 0 L... m

~ ,~,

wherep = (F1,..., .F.), I~E F(~D;D0 = D~o o D,~’1,a = (i1, . . . , i,~).

Note that l,=0 if and only iff =F(q1,..., q~)EC~(M’1),i = 1,2 r.
Besides,

lf~fl~+P ~lf~

wherep EP, fE F(~J).

1.5. Local regular differential equations. Denote by 1(q) the ideal in F(N)

consideringof functionsvanishingon 14,.,. Let theequation14 in a neighbourhood

V C N~be determined by a collection of functions{.~/ }i~’ = 1, 2 R, i.e.

tanV={0kEN~,9~’,(0k)=0,P=l,2,...,R}.

Then the functions of C Diff(~9’), i = 1, 2 R belong to I(q,,.) in the

neighnourhood¶1 ‘k~V). If in this neighbourhood1(q) = ~ C Diff(,9°,)then we
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saythat q is regular in V. If for eachpoint 0k E q thereexistsits neighbourhood

V
0 C N~in which q is regular,thenwesay that q is locally regular.

We will need the following standardresultsof formal theory (see e.g. [61).
Let equation q be formally integrableand locally regular and W’ C N a

canonical chart with coordinatesq1, p~,in a neighbourhoodof a point from
q. Then:

1) Thereis a domain W C W’ such that coordinatesq1 togetherwith some of

coordinatesp~,(we denotethem by p~theremainmgonesby p~)form a coordinate

systemon W fl ta,,,;
2) Restrictions~ of coordinatefunctionsp~,onto 14,,, are functionsin

i.e. = ~ and the prolongation14,, is determinedby equations

p~,—f~(q1,p~)= 0.

In this work we only considerformally integrableand locally regulardifferen-

tial equations.
Everywherein this work we denotethe restrictionof a functionor an operator

onto 14,,, barringthe symbol of this function or operator,e.g. [=f~ q, D1 =

= D, u,,,. The summationsign for repeatedindicesandmulti-indiciesin cumber-
someformulaswill be oftenomitted.

We will needthefollowing technicalresults.

Let q C J”I An operatorA E Diff (F(q)) is calledvertical if

[A,f10 forany fEC~(M).

LEMMA 1.5.1. Each operator A E Diff (F(q)) in canonical coordinates ~, ~L
on W n q,,, is uniquelyrepresentedin theform

A = ~

whereV0 are vertical operatorsand15 = . . . 15~”,a = (ii, ia).

Proof In coordinates~, ~ on W fl 14,, anoperatorA E Diff (F(q)) is expressed

in the form

Ir~

A= ~ .~. a~’~ a~... a~a~
S+ IrI—0i~ i~ o~ o~ r

01 Os,l~

where
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a a ‘~

— (_) o...o(_) , r=(j~

~ a~ aq~

If in this formula we substituteoperators(D1 — ~ ~+ 11 ~-~)~ for

then A may be reducedto the form A = ~ V0 0150, where operatorsV0 contain

the derivatives only with respect to variables~, and therefore commute with

all functionsfE C”(M).

Now we will prove that this representationis the only possible one. Let

0 = ~ V0 0150 = ~ V0 D0 + terms of order<k in D1. Considerthe operator

= . . .

where=(11,..., i~),jrf=k.

Obviously, for any multiindexa, a ~ k:

r! if a=r

=

0 if a~r,

whereT! is the productof factorialsof all indicesfrom multiindex r~Then

0 = ~-(0) =

= V0 0 + termsof order< k in D1) =

= ~ &~ (V0°D0) = ~ V0o b~(D)= r! V~..

Hence,VT = 0,1 TI = k, etc. . •

COROLLARY 1. Each operator A E Diff(F(q)) may be uniquely representedas
the sum of two operatorsA = 11111 + V, where D is a vertical operator, and V =

= ~ 0 V1. where V~E C Diff(F(q) V~,(1) = 0 and are vertical operators.

Proof Proof consistsin applying the standardtechniqueof the partition of the

unit andthe statementof Lemma.

COROLLARY 2. Let A = ~ 0 V~E Diff(F(q)), where V, E C Diff(F(q)),
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V, (1) = 0 and operatorsD~are vertical. If A is a vertical operator, then A = 0.

Proof Expressthe operatorA in canonicalcoordinates~, ~ on W fl t.i,., in the

form

~ V0oD0,
al> 0

where V0 are vertical operators.In what follows, 0 = [A, ~] = ~ V0 0 D 1!’

where thej-th index of multiindicesis ~‘ 1. By the uniquenessof representation

V0 = 0 in lemmafor all V0~.Since it is true for allj = 1, 2, . . . , n, thenV0 = 0 for
all V0.

REMARK. The sameargumentsas in the proof of Lemma show that eachA E

E Diff (F(q)) in canonical coordinateson W fl 1~I,,,, is uniquely representedin
the form

A= ~D0oV0,

whereV0 areverticaloperators.

1.6. d-cohomologyand Euler operator. Let A~(q)= A~(q)/~A~(q)and Z3
= w + CA~(q),for any WE A~(q).There is a naturaldecomposition(see [5])

A~(q)= A
1~(q)~ CA~(q).

Formsfrom A’~(q)arehorizontal.
The obvious inclusion d(CA~(q))C CA~+ 1(q) allows us to determinethe

differential d.A~~(q)_÷A~~(q)The cohomology of the arising complex

0~F(q)~A’(q)~+..

isdenotedbyH~(q), —

If ti = N(J’~~J)then instead of A~(q)and H~(
14)we will write A’

1(N)
(A”(lI)) andH~(N)(H~(~j))respectively.

On C-differential operatorsthere is defineda conjugationdenotedby asterisk.

Namely, if A :P—+Q, then A* :Q—*P, where for an F(t1)-moduleS we set
(see[5])

S = Hom~.~(S,X’1(q)).

IfL3EA’1(q), then l~ :x(~1)—*A’1(1T)and1~:F(~J)—i.x(~T)forA’1(~J)=F(~).
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Elementsof A’1(~T)are interpretedas Lagrangiandensities(see [5]). Then the
classicalEuler operator ~ recoveringthe Euler-Lagrangeequationsfrom Lagran-
gianscanbepresentedin the form

÷l~(l) =

i.e. l~(1) = 0 is the Euler-Lagrangeequationcorrespondingto the Lagrangian

density GIl.
In §3 we will needthe following two facts which immediately follow from

the propertiesof the universallinearizationoperatordescribedabove:
1) 1)~L(l)= l~(f) forfE C~(M);
2) If ~ = dq1 A. . . A dq~(mod CA~1),then lj~= 0 if andonly iffE C~(M).

§2. SECONDARY DIFFERENTIAL OPERATORS. GEOMETRIC APPROACH

2.1. Guiding considerations. Scalar secondarydifferential operators in their

simplest form shouldbe operatorsactingon <<smooth>> functions determinedon
the <<manifold>> Sol q of local solutionsof the systemof (non-linear)differential

equations14 compatiablewith the localisation operators.The latter meansthat
if E is a secondaryoperator,then D (f) U = 0 (fI U), wheref is a <<smooth>>
function on the <<manifold>> Sol ta. However it would be unrealistic to try to

determine a form of secondaryoperatorswhen dealing directly with <<mani-

folds>> of Sol ta kind trying e.g. to determinethe topology, C’~-structure,etc on
them. Insteadwe will considerthe virtual bundle

(2.1.1) r.i,,, . . . —÷Sol q.

Here we meanthe following. The Cartandistribution on is completelyintegra-

ble and its integral manifolds are nothing but the local solutions of ti. If the
Frobeniustheoremswere true in the consideredinfinite dimensionalcase,then

throughany point of q,,, the unique solution of ‘ci would pass,hence14,, would

be stratified into solutions. In other words, the <<manifold>> Sol ta might be
identified with the <<manifold>> of integral manifolds of the Cartandistribution
on 4. Therefore Sol q might be locally representedas the baseof the bundle
ta,, —+ Sol ta. However, the Frobenius theorem on ta,, is not in general true

sincethe solution of the system nearthe given point is not uniquely determined
by valuesof all its partial derivativesat this point. Thereforein generalthebundle

ta,, —+ Sol ta doesnot exist. Whenwe say <<virtual>> we meanthat whennecessary
we will discuss as if it existed. In particular the proposedgeometric approach

to determiningthe secondaryoperatorsis basedon the following considerations.
Let r~:M1 —+M2 be a smoothbundle.Describeoperatorson M2 in termsof
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some objects determinedon M1. If we apply the obtaineddescriptionto the
virtual bundle (2.1.1) we get a definition of secondarydifferential operators.

Denote by FC(17) the linear space of operatorsfrom Diff (C~(M1))mapping

the subspaceof functionsconstanton any fibre of 17 into itself.
Let FC’(77) be a subspaceof FC(~)consistingof operatorsmappingthe func-

tions constanton any fibre of 17 to zero.Then the following obviousstatement

holds,its proofis omittedhere.

PROPOSITION2.1.1. FC(~)/FC’(~)= Diff(C~(M2)).

The structureof spacesFC(~)and FC’(~)is describedby the following ele-

mentarystatementsubjectto a direct verification in coordinates.

PROPOSITION2.1.2. 1) AEFC’(fl) if and only if A can be representedin the
form A = ~ A. ow., where V~are vertical vector fields on M1 with respect to 77

and A1 E Diff (C(M1));

2) A EFC(~)if andonly ifFC’~77)o A C FC’(~).

Now assumethat we are given a foliation F on the manifold M or, which is
the same,a completelyintegrabledistribution on M. Then differential operators

on the <<manifold>> of leavesof this foliation canbe definedby usingPropositions

2.1.1 and 2.1.2.Denoteby C(U) the set of all smoothfunctionsonM constant
on the intersectionof anyleafof F with a domainU CM. Further,set

FC(F)={AEDiff(C~(M)I A(f)IUEC(U) if

fEC(U) VUCM},

FC’(F)={A EDiff(C°~(M)I A(f)I U= 0 if

fEC’(U) VUCM}.

ObviouslyFC(F) andFC’(F) are subspacesof the IR-linearspaceDiff (C”(M))

and FC’(F) C FC(F). Now, taking Proposition 2.1.1 into accountthe set of all
scalar differential operatorsDiff C~(F)on the <<manifold>> of all local leaves
ofF canbe naturallydefinedby the <<formula>>

Diff C~(I’)= FC(F)/FC’(F).

REMARK. We underlinehere, that we do not try makeany senseof the symbol

C~(I’).

In this more general situation the following analogye of Propostion 2.1.2
holds.
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PROPOSITION2.1.2.’ 1) A E FC’(F) if and only if A can be representedin the

form A = E A, 001, where D~are vector fields tangent to leavesof Fand A1 E

E Diff (C~(Mfl;
2) A E FC(F) if andonly if FC’(F) o A C FC’(F).

Proof Proposition2.1.1 implies Proposition 2.1 .2’ becausedefinition of spaces

FC(F) andFC’(F) havelocal characterandlocally eachfoliation is a bundle. U

2.2. Intrinsic secondaryoperators.Now it is naturalto set

FC’(C(t.fl) = Diff(F(q)) o CD(q)

FC(C(tfl) ={A E Diff (F(q))l FC’(C(q)) oA C FC’(C(q))},

following the lines of Proposition2.1.2’ andtaking into accountthat theCartan

distribution on ta,, determinesa virtual bundle, more exactly the foliation C(q).

Clearly,FC’(C(q)) andFC(C(q)) aresubspacesof theIR-linearspaceDiff (F(q))
and FC’(C(q)) C FC(C(q)). The following proposition is the direct corollary

of definitions.

PROPOSITION2.2.1. 1) FC’(C(q)) is a left ideal in the IR-algebra Diff(F(ti));

2) FC(C(q))is a subalgebrain the IR-algebraDiff(F(tfl);
3) FC’(C(q)) is a two-sidedideal in FC(C(q)).

This propositionallows to definethe quotientalgebra

= FC(C(T~ifl/FC’(C(q)).

DEFINITION. Elementsof ~ (F(q)) are called secondary(intrinsic)differential

operatorsof the equationta.
Further,set

FCk(C(4)) = FC(C(q)) fl Difç(F(ti))

FC,~(C(q))= FC’(C(q)) fl Diffk(F(T~l)).

Clearly FCk(C(q))and FC,~(C(’-i))aresubspacesof theIR-linearspaceDiffk(F(q))

andFC~(C(~))C FCk(C(q)). Thequotientspace

= FCk(C(ifl)/FC~(C(q))

is naturally realizedas a subspacein ~ (F(q)). Its elementsare calledsecondary

(intrinsic) operatorsof order~ k. Obviously thereis a chainof inclusions
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~H~0(F(q)) C ,I~cI~1(F(q))C. . .C ~ C. . .C j~(F(q)).

If ti,, =N,~(J’°~J),then we will write FC(C(IV)) (FC(C(11))), ~s.4(F(N))

~ (F(~D))etc. insteadof FC(C(q)), ,r~wi~(F(q)) etc..

PROPOSITION2.2.2. 1) ~w~0(F(q)) = FC0(C(q)) ={ fE F(q)I X(f) = 0 for any

XE CD(F(q))};

2) FC0(C(N))=IR;

3) ~i.ii~1(F(q)) = FC0(C(1.I)) 0 Sym 14.

Proof I) The obviousidentityFC~(C(q))= 0 implies,i~w~0(F(q))= FC0(C(tI)).

2) Let fEFC0(C(q)), where fEF(q). Then XOfEFC’(C(q)), where XE

ECD(F(q)). But Xof=foX+X(f). Since fOXEFC’(C(q)), then X(f)E
EFC’(C(q)) andthereforeX(f) = 0. If ta = N it meansthatf= const.

3) We observe,that FC(C(q)) = CD(F(q)). On the other handtheinclusion

FC’(C(q)) 0 A C FC’(C(q)) is equivalent to the inclusion [FC’(C(q)), A] C

C FC’(C(t~1))becausewe always have A oFC’(C(q)) C FC’(C(q)). This implies

[CD(F(q),A] CFC(C(14))= CD(F(q)),

if A E FC1(C(q)). Further,the operatorA is uniquely representedin the form

A = A (I) + (A — A( 1)). Thenfor any X E CD(F(q)):

[X,A] = [X,A(l)] + [X,A—A(l)] =X(A(I))+

+ [X,A—A(1)] E CD(F(q)).

Hence

X(A(l)) = 0 and [X,A—A(l)] E CD(F(q))

for any X E CD(F(q)).

But this meansthatA(l) E FC0(C(q)),A — A(l) E Dc(F(ta)). U

2.3. The structure of secondaryopeators.When ta C J’~i,hence14,, C J~1,we
can give a more constructivedescription of the algebra )II~H~(F(q)). For this

denote by 3k(’cI)~ I ‘~ k <oc the set of all operatorsA E Diffk(F(q)) satisfying
theconditions

1) A(l) = 0;

2) A is a verticaloperator

3) [A,XIta,,,]=OforanyXED(M).

If 4 = J9, then we write 3k~D instead of ~ Clearly ~ is an IR-
-linear space.
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THEOREM2.3.1. l) 3k(t1)C~~’Ck(C(ta));

2) FCk(C(14))= FC,~(C(q))eFCo(C(q))03k(q).

Proof 1) Since operatorsof the form X I ~ generateCD(F(q)), seen. 1 .4,

then the space FC’(C(T.i)) is additively generatedby operatorsof the form

V 0 X ~, where V E Diff (F(q)). If A E ~ then V 0 x q 0 A = V 0 A 0

0XI14EFC’(C(q)). Hence FC’(C(q))oACFC’(C(q)) and therefore AE

EFCk(C (14)).
2) Corollary 2 and Lemma 1.5.1 obviously implies FC’(C(t.I)) ~ ~(t.~) = 0.

RepresentA EFC(C(ta)) in the form A = A(1) + (A —A(l)). As in the proof
of Proposition 2.2.2 one can show that A(l)EFC0(C(~fl).Let A’ =A—A(l).
According to Corollary 1 of Lemma 1.5.1 A’ EFC(C(q)) is presentablein the

form A’ = 0 + ~ 0,, 0 V,,, where operators 0, D~ are vertical and V1 E

E C Diff(F(ta)). Since E 0~oV. EFC(C(ti)), then 0 =A’— E D~CV. E

EFC(C(14)), hence [XIti,,,,D] EFC’(C(ta)) for any XED(M). But for each
function fE C’~(M): [XI ta,,,, D],f] = [XIq,.,,,fI, 0] + [f, 0], Xl ‘cIj =

= [kIq,,,,f],0] = [X(f), 0] = 0. Thus, [Xlq,,, 0] belongsto FC’(C(q)) and
is vertical. Therefore,[XI 4,,, 0] = 0 for all XED(M) by Corollary 2 of Lemma

l.5.l,andDE9k(q). U

COROLLARY. If q CJ~(~J)then

,~McI~k(F(ta)) = FC0(C(q)) 0

REMARK. Due to the corollary the operatorsfrom FC0(C(q))0~ will be

calledintrinsic secondaryoperatorsof the equationta.
In conclusion of the n. 2.3 we obtain relations for the coefficientsof the

verticaloperatorA E Diff (F(~-ifl,A( 1) = 0, which are equivalentto thecondition

3) of definitionof
Let a coordinatechart W with the canonicalcoordinatesq1,p~in N~be such

that coordinates q1 and some of coordinatesp~form a coordinatesystemon
W n q, as in n. 1.5. Then the restriction ~ of each coordinatefunction p~
onto W fl 4,, is a function in ~, ~.

Sincethe operatorA is vertical, it is presentablein the form

A = E. ~ a” as
si ~F1

01

in coordinates~, ~ (see 1.5). Without loss of generalityassumethatcoefficients
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a~’~are symmetric, i.e. ao~a) = a~’’~for any permutationg of s elements.

The condition [A, XI ta,,] = 0 for any X ED(M) is equivalentto thecondition

[.~, A] = 0 for any j = 1, 2, . . . , n in coordinates~, ~ Indeed, since in coordi-

a
natesq. a vector field X ED(M) is presentablein the form X = ~ f~

/ 1I aq,,
whereJcEC”(M),thenk=~f..D.andXIq=~f..~..Hence[XIq,A]=

=E[J~,A]D1 +~[151,A1=~[151,A].

Rewrite the conditions[D1,A] = 0 for any j = 1, 2 n it termsof coeffi-

cients a’J~of operatorA:

[~~A]=[a~~ ai.~.a~]

+
~, / 01... 05 a~. . .

k . . [ as
~ ~ID.,

s=1 01..Cs L ‘ a~. . .

Since

F
ID. . i =

L / a~. . .

a’P~+i1

= — a~’ a~”~1
11 1~T1<...<T1~S I~~1

“U ~0

then

~ a~’1::.’~5[b1~a~a

a~t
I ~?+ 1/ ~ . . =

~ a—” ...a~ ~ ô~ ...
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S 1 s—i-i-i

= - ~ c~s - i + i a~

______________________—
—

a — +1
1r

a~.arc e~a a~ ...01 UtThus [D
1,A] =k . t k= E (~(a~’~)— ~ -~- ~ - t +1 a” a-’s-t~t=i r=1 s=t P~a —~ ~ ~ ~ ... a~ —

k t k—r+i

E C+tI

1l1i111rht

aurcc~ ~ ... a~i~

at
Note that the coefficientsof . . in the last expression are symmetric.

a~. . .

Thereforethe condition
[A,~jta,,]=0 forany XED(M)

in termsof thecoefficientsis equivalentto

(2.3.1) I .

t k—t+1 a~!’r
= ±. ~ ~ ~/ 1~1~

11•1r~1t

r=1 1=1 ~ ~ ap~’. . . ap4J ~

for t = 1,2, . . . , k;j = 1, 2, . . . , n and any ~, . . . , ~ i1
1.
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2.4. Generatingoperators.Now, describe the operators from ~k(~~) in canonical

local coordinatesq1, p~. .

Set £f
2 / (V) = [D

1,VI, where V E Diff (F(~J)), £‘~,= 99 ~I 0, 0 a =

= ~ ~2 ia).

THEOREM 2.4.1. 1) An operator of theform

m a
(2.4.1) A = ~ ~2°0(V,,) —-,

i=I 0 P0

where V1 are vertical operatorsfrom Diff (F(IT)) for i = 1, 2 m, is an opera-
tor from~k~’

2) Each operator A E is presentablein canonicalcoordinatesq1, p~in the
form (2.4.]).

Proof To provethis we needtheidentity

ID. y~ a’~
1r a =L / ~l~tlr 01. ~r ap’ ... ap~

(2.4.2)

= ~ ~ ~ ~ apt’ ar ap~’

which immediatelyfollows from

(2.4.3) [~‘ ap~’... ap~] ~ ap~’. . . ap~
1 .. . ap~

which in its turn follows from the obvious identity

a
F ai a . ,if l.~l

I D., —~ I = — . = ap~1 i—i 1) /
L’ a~’i ap~~1 ‘ ‘ “0 / 0 , if l,=0

1) In the proof of Theorem2.3.1 it was shown,that if V is a verticaloperator,

then so is [V, X] for every XE D(M). Therefore 2
9

1(V) is a vertical. Since
is vertical,also thenso is E ,2

2
0(V,) —~-~--

ap~ 1,0 ap0
It was shown in n. 2.3 that the condition [A, X] = 0 for any XE D(M) is
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equivalentto the condition [A, D,] = 0 for i = 1, 2 n. Further,

FA,DJ] =[~~~
0(V1) -~

=~([~0(Vj),~]o ~-~—,- + ~ =

~ ~ 11(V1) 0 ~-~- + ~0(V,) 0 =

—- +~‘0~1(V,,) __-~)=o.

2) Let

k . . as
A = ~ a~I~ap” . . . öp~s

~ ‘i.-~‘¼ 0~
01’...’0S

be a secondary operator of order ~ k. Without lossof generalityonecanassume
that its coefficients ~ aresymmetric. Rewrite A in the following form

A=~(~ ~ ~ a as1 )
1,0 s1 ~1 1s_1 ~o, ‘ ‘ ‘ ~o

51 ~o 1,0 P0
01

The symmetry of coefficients of A and (2.4.1) imply that the condition [D1,A] =

= 0 for any j = 1, 2 n on A is equivalent to the fact that coefficientsof A
satisfy

(2.4.4) ~ ~) —~ ~ = 0

fors=1,2 k;j=l,2 ,i1,..., i5=1,2 m,andanya1, a~.
Rewritethis equationin the following form

(2.4.5) ~ ~

fors=1,2 k;j=1,2 ,i1 i5=l,2 m,andanya1,..., a~.
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Then (2.4.1) implies A,,0~1= [D1,A,,0] for i = 1, 2 m, / = 1,2 n.

Hence

a
A=~ 2’0(A,,0) —;-.

ap0

DEFINITION. A secondaryoperator

is denotedby 3~i-and the set V = (V1 Vm) is called thegeneratingoperator
for 3~.

REMARK 1. If V. = .9’~IE F(1j), then

2’(.</~)=D(Y~)=D~’(. . .(D~(5’~).. .), i = 1,2 m

and 9,~= ~ D0(,~) is nothing but the standardexpressionof evolution

differentiation3~,in coordinatesq1, p~(see [5]), where 9= ~ ~9’~,)= V.

REMARK 2. Generatingoperatorfor a secondaryoperatoris not uniquely deter-

mined. For instance, let ¶ = I~ be the trivial one-dimensionalbundle over

IR,V=— .Then3~=0=30.
ap1

REMARK 3. In the coordinatesany secondaryoperatoris defined by a set of
its coefficients. Clearly, these coefficients are not uniquely determinedif the

operatoris of order ~ 2. Only symmetriccoefficientsare uniquely determined.
Coefficients~ of the secondaryoperatora~can be uniquely recoveredfrom

a’~~ of thegeneratingoperatorV = (V1,..., Vm)~where

k—i . . . a

V = ‘Y V~ ~
1s—11 ______________

- L....
5 0i...0~l ap’I ... ap~’

s—U ,j ~ 01
01,.ps_i

i 1 1 ~i--s—i’by recursion(2.4.5)setting~ = a00 . It what follows we will always
assumethat coefficientsof operators3~are obtainedthis way.

2.5. Extrinsic secondary operators. In the theory of infinitesimal symmetries
of differential equationsthe following fact is known: each intrinsic infinitesimal
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symmetry of an equationq may be extendedto an extrinsicsymmetry(see [3]).

Since intrinsic infinitesimal symmetriesare intrinsic secondaryoperatorsof an

equation(see n. 2.2), it is naturalto assumethat eachintrinsic secondaryoperator
is extendableto a secondaryoperatoron N~(J”~1).
Here an elucidation is required.By definition eachintrinsic secondaryoperator

A of an equation is the cosetA = U + FC’(C(q)), 0 EFC(C(4)). Since each
operator V E FC’(C(q)) is presentablein the form V = ~ V, 0 (X,, ~ where

X1 E C Diff (F(N)), V1 E Diff (F(T.ifl, it is extendableto the operatorV = ~ V, 0

oX1 EFC’(C(N)), where V, is an extensionof V~.That is why we will take as

the extensionof A E t~w~(F(q))the class 0 + FC’(C(N)), where 0 is the exten-
sion of a representativeof the class A from ti,, to N,. This definition implies
that the above assumptionon extendability of intrinsic secondaryoperatorsis
equivalent to the assumption on extendability of any operator from FC(C(q))to

an operator from FC(C(N)). However, the following exampleshows that this
assumptionfails in sucha generality.

Example. Let ¶ = 11w, i.e. the trivial one-dimensionalbundleover IR and q, p,

~ p,~,. . . canonicalcoordinateson J” 1L~.Consideran elementarydifferen-
tial equation4 ={p~= 0} Cf’ 1l~.Clearly ta,, ={p,,, = 0 for any k = 1,2, . .

Hence4 is a two-dimensionalcoordinateplane with coordinatesq, p in J~

a
Clearly, the operatora + b -~— , where functionsa and b dependonly on p,

—a a a
commuteswith D = — ~ = — . Hence(seen.2.2), a +b — EFC(C(14)).

aq aq

On the other hand,A(I) = const for eachA E FC(C(IV)) (see n. 2.2). Therefore
a

the operatora + b — is not extandableon J~11~if a ±const.
ap

DEFINITION. A secondary operator A E ~ (F(]V)) is an extrinsic secondary

operator of an equation ta, if the coset of A contains a representative,which
admits a restriction onto ta,,. If A is an extrinsic secondaryoperatorof ta, set

Al ta,, = 0 lu,, + FC’(C(q)), where 0 is a representative of the class A, admitt-
ing a restrictiononto4,,.

Now we are going to prove, that intrinsic secondaryoperatorswith constant

free termsare extendableto extrinsicsecondaryoperators.
To proveit we will needthe following technicalresult.

Let W be a chart with the canonical coordinatesq1, p~,as in n. 1.5, so that
coordinates~, ~ constitutea coordinatesystemon W fl 4,, and the prolonga-
tion 4,, is defined by equations
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ni_fit i~I_O
‘_‘Q ~

0’-”/’’-’~-’ —

Thenin W theideal I(ta,,) is generatedby the functions
,t~

1—n’_.-f’(n n’)

~ t~

7 Jo ~
1/’’—e

Set f~(q

1,p~)~p~ and ~=p~—f~(q1,p~)= 0.

Thenwe may assumethat in W the ideal I(ta,,) is generatedby all the functions

,y,I_~’_fi( 71~

o~’o J0\’1j~t’~

Considerthe operator

k . . a
5

o=~ ‘r A”’~ -
~ a “ a ts

s=0i
1 i5 pal...
01,.ps

Without lossof generalityassumethat its coefficientsare symmetric.For simpli-

city denoteby amultiindices (~)of coordinatefunctions,operatorcoefficients,

etc. . In thesenotations0 is of the form

k a~
D=Y~~A ~ a a

P5 0~~’

LEMMA 2.5.1. The operator 0 is restrictable onto ta,, if and only if its coeffi-
cientssatisfy

1 k—r+i a’p
(2.5.1) Aai...or_ior ~ = ~ C~r-1 ap~...a

tp~‘Ac,...c,01••~0r_1

for r = 1, 2, .. . , k; andany a , a~.

Proof Recall that the restrictibility of 0 onto ta,, meansthat D(I(ta,,)) C I(ta,,)

and the latter is equivalentto conditionD(.9°flta,,= 0 for any 9°EI(4,,).Let
,9”E 1(4,,).Thenon W the function,ff is presentableby the sumSf = ~

Thereforeit is sufficient to determinewhen0(51)1q,,=0 for51= X ii~’andany

X EF(N) and a.

k

D(51)=~A =

=~ 01.05 ap ... apS Os
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k
= ~ A0,•~~ ap .

0ap

s=0 i=O1~i

1<...<i1~s 01, ‘

~ x

ap0...~ ...~ ..ap =0. 0- ‘
I,

k a~
~ ‘A =

~ ap . . . ap
s=0i=0 ~i~J . . . a,v~ 01 os_i

k k—r a’~ a’x

=~Ci ° ‘Ar+ 1 ap . . ap VI...PlO1...0~ ap . . ap
r=OI=0 . -‘j 0,.

Since~ 14,, = 0, then

k—ik—r

D(~)Ita,,=~ ~ ap ..ap

1=1 0, ‘

a
T x

A
0, ViOi 0

ra .ap

Therefore0 is restrictableonto ta,, if andonly if

k—r

° A .orlta~0
= ap,, ... a,~ 11.01 01..

forr=0,l,2,...,k—l;andanyu,...,a a.

Rewritethe last equationin the form

1 k-r

A l~~=—~C’ A-
001.. Or r+ 1 ,“~r’j I+r ap . . ap~ ~‘

“I

for r=0,1 k—l and any a ,a~,a taking the form of functionsq,0

into account.Denotingr + 1 by r in this expressionwe get(2.5.1). •

Note that formulas (2.5.1) give recursive expressionfor the coefficients
A ta intermsofthecoefficientsA_ — I ta,, fors, r = 1,2, . . . , k.

01... °r

THEOREM2.5.1. Let ta,, CN~’.If AEp~H3~(F(q))and A(l)=const, then A is

extendableto an extrinsicsecondaryoperatorof theequation ta.
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Proof Let W be the samechart with coordinatesq1, p, as in Lemma 2.5.1. To

provethe theoremit sufficesto show, that in eachchart W thereexists an opera-

tor D~,EFC(C(]V)), restrictableonto ta,, andsuchthat

~ +FC’(C(q))=A.

Further, making useof the partition of unity we get the completestatementof

thetheorem.
In the chartti,, n Wthe operatorA is presentablein the form A = FC’(C(q)) +

+ 0, where 0 EFC0(C(q))~~k(~)’ due to Theorem 2.3.1. Thanks to the above
we shouldextend0 to the operatorD~E FC( C(N)).

Let the operator0 in coordinates~, ~on 4,, fl W be the form

k as
D=a0+~ ~ ~ a a

FF1’’’ ~e

wherea0 = const andaF~are symmetric.Making use of (2.5.1) we recursively

recoverLi0 on W fl q,, from aFa, r> 0. Namelyset

(2.5.2) b5,,7 ~ for r= 1,2 k andany h,...,
and

— k—r+i a’~ —

(2.5.3) b01••~= ~ C1+~_1ap ~
1= 1 0,

forr=l,2 k;andanya ,ar.

o =u ,then (2.5.3) is clearly oftheformb - =b__ —r r — ~1 °r

0r01- ~rl
forr=1,2 k,andany~,...,a,,.

Thereforewe may assumethat (2.5.3) definesfunctionsb
0

0r for any multi-

indicesa , a,,.
Show that functions are symmetric for multiindices a~ a,,. We

prove it by induction in the number of unbarredmultiindices. If thereare no
unbarredmultiindices,then due to (2.5.2) and the symmetricity of coefficients

a
5 ~_ of 0 all the functions b5 ~— are symmetric. Supposethat all functions

with no morethan s unbarredmultiindicesare symmetric.Let be

a function with s + 1 unbarred multiindices. If a,, = a,,, then (2.5.3) implies
b — = b_ . Thus the transition of the last barredmultiindex the first01-°r 0r0I--0r—l

place does not changeb. Thereforewe may assumethat in the last place there
stands unbarredmultiindex (more exactly,an underlinedone) b~ , Then the

formula (2.5.3) for and the inductivehypothesesimply that all functions
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Sr with s + 1 unbarredindicesare symmetricin the first r — 1 multiindices.
Each of thesefunctions in presentablein the form b_ - . Hence,~I--Tr—(s+1)-Sr—s---Ir

to prove the symmetricity of these functions it suffices to prove, that a)
b =b. andb) b - - =b... - -.

T,...Iy_11p. T1---Ir~’-I lI.Ti.Tr_(s+I)Ir T1---Sr---1r—-(s+l)-1~i

a) (2.5.3) implies

k—r+i

TI_?r_I!r r 1+r1 ~ . . .

k—r+1 a’~
‘bce

5 = a~ .

1 k-- l—r+ 2 ap
I + r— 1 ~ C,~,,2 a~ . ~‘p~~1 ~ ~tri...yi...rr_2)

— k-r+ 1 k-i-r+2 (t + 1 + r— 2)! a~i-

— f~ ~ t! 1! r! ~ . . . a~ii.

a
t ~

1r—l

a~.. . . a~. ~I~t0i~~irITr_

2

In exactlythe sameway

k—r+1 k-t—r+2 (t + 1 + r— 2)! at p —I
Li x

= 1=1 t! 1! r! a~ ...

a~ —
x a~ . . . a~

01 Vi

Comparisonof theseexpressionsfor b and b showsthat they
i-i-- Sr—ISr ~1---Irlr—1

contain the same numberof summandsand the coefficientsof the sameterms

areidentical.Hence
=b

~1-•r1~~~
71.Tr~tr_I

b) (2.5.3), the statement a) and the symmetricityof functionsb in the first
r — 1 multiindicesimply for s > 0

b =b~ - =
T

1--ir...Tj ~i

TI-1rTr—(s+l)/r—s5r—I

=b - - =b - .
i-1--5ii-r—(s-l-1)ir—s---Sr-ir—l 11.. ‘i-Sr—I-Sr
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If s = 0, then the possibility to transposethe last barredmultiindex to the first

placeand the symmetricityin the first r — 1 multiindicesimply

- =b~
r
1 TjTI~•~Tr...Trl

- =b~
— U— _T,,_1 Ti i-1~ 1-~ TI...Tr_Irr

Thusall functions]5~
0r aresymmetricin multiindices.

Coefficients aa a~of the intrinsic secondaryoperator U satisfy (2.3.1).

Taking (2.5.2)and (2.5.3) into account these relations may be rewritten in the

form

(2.5.4)

for r = 1, 2 k; / = 1, 2 n and any ~,..., ö~. Now we will extend
theserelationsto arbitrarymultiindices.More exactlywe will provethat

(2.5.5)

for r = 1,2, . . . , k; / = 1,2 n and any a~ ~ To prove it we will

make use of induction in the numberof unbarredmultiindices.The first step

of induction is justified by the formula (2.5.4). Supposethat (2.5.5) is proved
for s unbarredmultiindices.Due to symmetricity we may assumethat the func-
tion ~b with s + 1 unbarred multiindices has an unbarred multiindex in

0~..0~

the last place.Then (2.5.3) implies

1 k—r+1

~ C/+r_i(~(a . ~a~)~i.njoi.or~., +

a1~
0 ——

+ ~ .. r ~(b__)

Due to the inductivehypothesis

~

Therefore
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1 k—r+1
— ~ a~ .a~~ ~ai.or~~ =

r—1 k—r+1 I

= ~ k, ...0~ +1/... 0~ °r + X

—

xC~,,1 ~ r

r—1 1 k—r+1

E0l0t+hjGrr ~ lx

—

ap~ r~ ~

Further,since

— a’ a’ _[ a’
D.o = oD.+ID., =

‘ a~_. . . a~. a~. . . a~ / L / a~. . .

a’ i at~
— r+1.

= oD.— / x
a~ . . . a~ / ~ ~ a~ ...

a~t+1

x ~

~ . . . a~. . . a~a~
1 I~ I~’ I

then

1 k—r+1

E CI+ri~( . ~ ~c,a,...ori =

1 k—r+1 p0+1. —

= ~ a~ , r a~ ~ —

1 k—r+1 I atjL
— — ~ ~ r1 E —

r ~ t=11~j1<...<j5<I ~.

a~t+
1~ —a~. . . ~ a~ ~ -‘4—1
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k—r+1 1 at~~
boi...ar_iar+li — r C C x1+,,—1 1

1=1 ~ a~.. .

al—t+l —

p0x

Thus

r

or) = ~ °t + ~ 0~ +
t1

I k—r+1
~ lC

1I+ r—1r ~— api . api v,...F
11oi+hi °I°r—I —

— 0,~’

1 k—r+1 1 a
t~~

1
~ ~:cI Ct I_I+r—1 1 —ap . ap_1=1 t=1 -y1•’ ~

aI—t+l~i~0
x

api . api api
0k’’

0i~~t 7

Now, prove that the expressionin bracketsvanishes.Applying (2.5.3) to

1/ 01...0r1’ weget

1 k—r+1 a’~
0 k—1—r+2

—E1CIl+r—1 — I x
— ap ...a~ \l+r—l s1
— U,

a
5~~

1 ‘b_
~ c:+ 1+ r—2

api . . . api ~ Vi...i 0~•••°r_I)

‘V1

1 k—r+ik—l—r+2 1 a’p or

r ic’ c
5l+r—1 s+I+r—2 api . api

1=1 s=1 l+r— 1 0k’’ VI

as
x

‘V

1...~,se1..Ji_,01... °r—i
a~

‘Vi

Thus theexpressionin bracketsmay be rewrittenas

I k—r+lk—1—r+2 i a’,~0 r

l+r—l l+r-1:+I+r-2 api .. . api0~ U,
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as
x . . api ‘ ~ °I°r—I —

Vs

atpi
-(I ~

a~t*l1~
x a~. . . a~ a~

Obviously, both parenthesescontain the same numberof summandsand same
summandshave the samecoefficients.Hencethe expressionin bracketsvanishes.
Thus(2.5.5)is true for all multiindices.

Rewrite(2.5.5) in theform

(2.5.6) bai...ar_j0r+ 1j = ‘~°1°r—1a,,) — E 0+ 1~...o,,

for r= l,2,...,k; /=1,2 n; and any 01’02’~’~’0r and observe that
all functions are recurrently expressedin terms of functions ~

where 0 = ((0,... , 0)) = ( ~),s = 1, 2, . . . , k — 1, for any 01 a~via

(2.5.6).

Now we extendeach function b in someway to a function b~”~’
0in

the domainW andconsiderthe operatorV = (V1, ‘~2~, , , Vm), where

k . . .

= ~ b~~’0a ~l
P0 . . . P0

The coefficientsof the secondaryoperator

k a
t

Dwao+3v’ao+E ~ Aoa a a
~= 1 °l’’°r POr

satisfy therelations(2.4.5):

Aoi...or_i Or+ 1 = ~(A
010) — ~ A00+ ~~0r

for r = 1, 2, . . . , k;/ = 1, 2, . . . , n; andany 01 , . . . , or. Therefore
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~

for r = 1, 2, . . . , k; / = 1, 2,. . . , n; and any a , a,,. Comparing the last

relationswith (2.5.6)and taking into accountthat

A01..0,,1~1~ = b0 ° 1 °1°r—l 0

we seethat

(2.5.7) Aoi...or I ~ =b01•~
0r for r = 1, 2,. . ., k; andany ar,...,

Sinceb
00 aresymmetric,then

I
— A~00~ I ta,, = b00

for r = 1, 2 k; andany a a whereA = X A and S
1 r (°i-°r) gES,. °g(i)°g(~)

is the permutationgroup of r elements.Therefore(2.5.3) is identical to condi-
tions (2.5.1) of restrictability of 0~with symmetrizedcoefficientsonto ta,,.

Thus 0~is restrictable onto ta,, fl W. In particular,(2.5.7), implies

A~1...a)~ ~i’Vr = ~

forr=I,2 ~

COROLLARY. Let ta C JkiT. Then any ~ E ~ is extendabieto an operator

AE3k(~T).

§3. SECONDARY DIFFERENTIAL OPERATORS. FUNCTIONAL APPROACH

3.1. Disadvantages of geometric approachto the secondaryoperatorstheory

are that it is not clear on what kind of objectssecondaryoperatorsact. The
answerto this questionseemsactualespeciallysincewe havedefinedsecondary

operatorsas cosetsof differential operatorson ta,, and a priori it is not clearon
what objectssuchcosetsmay act. Moreexactly,sucha cosetcorrectlydetermines
an JR-linearmappingof the spaceof functionsconstanton leavesof the foliation

C(ta) into itself. However, as a rule, this spaceconsistsof constants(see[5]) and
all its JR-linearmaps are operatorsfrom ~w~0(F(q)) = JR. Thus, if we accept
a too formal approach,the existenceof secondaryoperatorsof non-zeroorder
forces us to doubt whether the approachput forward in the previous section

is well justified.
The simplest way of reacting in the described situation (keeping in mind
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virtual particles of contemporaryquantum field theory and virtuality of the
bundleta,, -+ Sol ta) is to considersecondaryoperatorsas virtual ones, i.e. opera-
torsableto act on somethingonly undercertainfavourableconditions.

However we migth attempt to makethe secondaryoperatorsact not on func-
tions but on some other objects. In this section we find such an actionunder

another((functional>> approachto constructingsecondarydifferential operators.
The idea is that from the verybeginningwe shoulddeterminesmoothfunctions

on the ((manifold>> Sol ta andonly afterwardsthesecondarydifferential operators
aslocalizableoperatorsactingon thesefunctions.

3.2. A <<smoothfunction>> on the (<manifold>> Sol ta is a cohomologyclass~ZE

E H”(q) (see n. 1 .6), where n is a numberof independentvariables.If L is an
n-dimensionalintegral manifold of the Cartandistributionon 4,,, i.e. L is a point

of Sol ta, then one can understandimage the value of the <<function>> &2 at a
(<point>> L as &2 L = I L, where w E X”(q) is a horizontalform on ta,, repre-
senting &2. Recall (see,e.g. [5]) that ~2 L is naturallyconsideredas an element

de Rham cohomology groupH0(L) and f2 as the ((action>>, i.e. an expression
of the form f51(q

1,p
1,pt,) dq, dp = dq

1 A. . . A dq~.The abovepoint of view
is motivated in many ways (see e.g. [1]). Here we draw the reader’s attention
to the fact that functions introducedon Sol ta are also of virtual character,
becausethe integration‘L ~ I L is in generalimpracticable.

Now we are to define differential operatorsas some maps from H”(T~I) into
itself. Here we encounteran obstacle:the groupH”(q) is not, in general, an

F(q)-module.Thereforewe can not makeuse of the standardalgebraicdefini-
tions (see [3]). Since H”(ta) = A?1(q)/dA~?_l(q)and A’

2(ta) is an F(q)-module,
we can understandundera differential operatoracting in H”(ta) a differential

operatorA : A”(q) —+ A”(q), suchthat

A (dA~’(ta)) C a(A°-1(q))

Indeed,this operatorA naturallygives rise to a mapH”(q) —+

The aboveshouldbe clarified. Namely, set

Diff(A0(q), A’1(q))={AEDiff(X~(ta),

An(q))IA(dA~l~(q))C dAn—1(q)},

Diff(A”(ta), A”(tfl) ={AEDiff(X~(q),

A~(q))IA (A°(ta)) C ~K~1(q)}

Clearly, Diff(A”(q), A”(ta)) is a two-sided ideal in the IR-algebraDiff(A”(q),
A”(q)). Thereforethequotientalgebra
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,tU44 (W~(q),H”(q)) = Diff(A’1(q), ~V1(q))/Diff(A”(q), A”(q))

is defined.

DEFINITION. Elementsof the algebra~ (H”(q), H”(q)) are called secondary
functionaldifferentialoperatorsof theequation14.

3.3. Now our aim is to prove that both definitions of secondarydifferential

operatorscoincidewhen ti,,, = J~11.For this we will needthe following results.

— Each vertical operator A E Diffk(F(~J))defines an operator ~ E Diff (A”(~J),
A”(~T))by the formula

~(f~3
0)=A(f) ~,

wherefE F(~J),~ E A”(lJ) and is a local volume form on the manifold M.
SinceA is vertical,~ is clearly well defined.

LEMMA 3.3.1. Let A E Diff (F(s)) be a vertical operator. If im ~ C dA’
1 -

thenA = 0.

Proof Let im A C dA~-’(~).Then (iS” (A(~5)) = 0 for each form ~3E

where6” is the Euleroperator.Let fE F(1T) andg E C”(M) C F(~j).Then

~(g~f~5
0)=A(g f)&30=gA(f)’w50

and

o = ~(~(g .f. ~) = (f.Z50)~
1~ =

Since operators l~are C-differential, 1~(~w ~0. Therefore _ 0, too.

The latter is equivalent to A(f)EC~(M).Thus we get A(f)EC”(M) for any

fE F(ID. Then—~-~--(A(f))= 0 for eachcoordinatefunctionp~,,i.e. ~-j~- ° A 0.

It clearly implies~ = 0. 0

Each operator A E 3k ~ is vertical, therefore it defines the operator
~ E Diffk(A”(ID, A”(~J)).Denotethespaceof theseoperatorsby 3k (~)•

THEOREM 3.3.1. 1) The space ~k(1T) is a subspaceof Diffk(A’~(~D’A”(ll)), I ~

~k<oc;

2) I~j~f~(Afl(~),A~(~))2~ffk~(~)’ A’~))~ n

Proof It sufficesto proveboth statementsin a chartwith canonicalcoordinates
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q1, p~,.In thesecoordinateseachelement from dN’~(11)is presentablein the

form ~ D,(.9~~)0~,where EF(~J),~ = dq1 A.. . A dq~.Since any operator

AE

3k commuteswith ,/= 1, 2, .. . , n, then

~(t~(~2~3o)=E A(~(9))~
0 L~,(A(S1~))~50.

Thefirst statementis proved. —

To prove the secondstatementwrite the operatorA E Diff (A”(~I), A’
1(~T))in

coordinatesq/, p~:

k . . as+n
~ a~’~ a a ‘~a =~3

0®A.._.

s+IsI=0 p01... p0 q7

Due to Remarkof n. 1.5A~0is uniquelypresentablein the form

A~0= ~ D0000
Ia I~,0

whereD~are verticaloperators.Set

~ D0o00.
Ia 1>0

ThenA = V + 0. WehaveV EDiff (A”(ll), A’~Jfl.Indeed,the conditionV’(A”) C

C dA’~(1~)is equivalent to the condition V~(F(
1~))C~2D

1(F(1D)verified

by VJ— . Since A, V � Diff (A” (11), A”(~J)), then 0 = A — V E Diff(A”(lj), A”(~J))

or equivalentyo~(~ L~~(F(1r)))C ~ D1(F(ir)).

But the latter is equivalentto [D1,0~] (F(~9)C ~ D1(F(~))for any/ = 1, 2,

n. Now Lemma 3.3.1 implies ED1., D~] = 0 for any / = 1,2, . . . , n, since

[D1,0—] is a vertical operator. Therefore D~ E JRa~ and 0 E JR a
a3k(~J). •

COROLLARY. ~~k~
11~’ H”(~T))= ~ aJR.

REMARK. A trivial exampleof euqation ta ={p
1 = 0) C ,91 1I~shows that if

ta,, ±.9”~J,then)~w~k(H(q),“’~~))~ ~k(~)aJR in general.

3.4. One may define secondarydifferential operatorsof infinite order literally
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following the above geometrical or functional definition of the finite order
secondaryoperators.We mean that an infinite order differential operator is

an JR-linearmapA : F(q) —÷F(q) satisfyingthe following conditions:

1) A(F(ta)) C i~~,(ta),I =j(i); 2) Al F(q) is a differential operator of order
k = k(i) and k(0) ~ k(l) ~ k(2) ~ . . . . It is quite clear that all resultsof this
paperaretrue in the caseof the infinite ordersecondaryoperators.

§4. APPROXJMATION OF SECONDARY OPERATORS BY AVOLUTION
DIFFERENTIATIONS

4.1. It is well known that each scalar differential k-th order operator on a

smoothmanifold is presentableas a sum of compositionsof
1st order operators

and a free term. Does this fact hold for secondaryoperators?The following

exampleshows,that the answerto thisquestionis negative.

Example. Let ¶ =

11m’ V = ~ ~ ~ , where q, p, are canonicalcoordinates
~=o ap.

on.’3~1~.Then isnot be presentablein the form

(4.1.1) 3v~3~
503~5+~3f,,.

To makesureof this, note that the coefficientsof secondaryoperatorsof the

form

ap~:p~

satisfy

a11 = (— 1)~~D
1~(a,,~

50),

which follows from the recursion (2.4.5) and Remark3 of n. 2.4. For 3~it
implies

a10 + a01 = p2 + (— l)~CD’5(p2).

Thisformulashowsthat functionsa10 + a0,, areof the form

(4.1.2) a,,0+a01=p2+f(p, . ..
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On the otherhand,(4.1.1) implies

(4.1.3) a10 + a01 = ~ (D’(~)~~ +

Let k be the maximum numberof variablesp1 on which functions9~and
s = 1,2,. . . , 1, depend.Then functions a10 + a01do not depend on variables
p1, j> k + i as follows from (4.1.3).It contradicts(4.1.2).

4.2. However it turns out that any secondaryoperatormay be locally approxi-

matedwith any accuracyby a sum of compositionsof secondary1st operators.
More exactlythefollowing theoremholds.

THEOREM4.2.1. LetA E
3k (11). Thenthereexistsa finite set ofevolutiondifferen-

tiations ~ 3 3~, for any canonical chart W

any positive integerr such that the restriction A I F, (~J)of A is presentableon W
in theform

A~F,(~)=~ ~1,s ~~k(s~slT~

Proof First we will provefor any homogeneoussecondaryoperator

A = ~ a~I~ap” . .. ap~
01

01

on W and any positive integerr thereis a finite set of evolutiondifferentiations

and a finite set of homogeneous(k — 1)-thorder secondaryopera-
torsA

1, . . . , AL suchthat

~

wheresmbl0 denotesthe sumof all k-th order termsof 0.
LetA=3v,whereV=(Vi,...,Vm).

V — ~ b’l’Ic-l’
— . L..,. °1--°k—l ap” . . . ap”’1k—I 0~ °k—i

01 °k—1
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and

ak
AIF(lr)= ~ ~i: a”t~’

0l°k a “ a 1k

1k P
01 . . . P0k

Remark3 of n. 2.4 implies that coefficients~ I o. I ~ r / = 1, 2 k are

uniquely definedby the coefficientsof generatingoperatorsb~,’”?”, I a~s~2r,
/ = 1, 2, . . . , k — 1. For coincidenceof two operatorsfrom 3~(~J)on F,. (~1)it

sufficesthat theirgeneratingoperatorscoincideon F2, (ID.
Let A1 = a’,, whereV1 = (V11 Vim) and

v11= ~ i•~Ic—2 a ~ a ‘k—2 ~
p1’-—’ ‘k—2 !‘~,
01

0k—2

Then

AlF,(ID=smbl~ (3
5,oA1)~F,(~,

if coefficientsof operatorsA, and functions,9°~satisfy equations

(4.2.1) D (~. ) X’!~
1k11 = b’l’k_l’,

— 01,11102... °k—1 010k—1

I alI,...,Iak_lI~2r; ~1 ~ i=l,2,. . .,m.

Thenwe rewrite(4.2.1) in thefollowing form

(4.2.2) ~ X
1 = b~”°’~

where ~
1”~’~ = D

01(51,11),X1 = X ~‘‘, b~~0~)= b~’~
t~’’.Let us consider

the system(4.2.2) as a systemof linear algebraicequationswith respectto the
unknowsX,. Choosea numberL and functions51H, so that thematrix of (4.2.2)

(11,01) . .

were square and det (A
1 ) ~ 0 (Then thereexist solutionsX, for any right

hand side b(1I~°1)). For this purposewe order lexicographicallythe set of multi-
indices (i1, a1), i1 = 1, 2, . . . , m, I a1j ~ 2r andassumethat it is a rangeof values

of the index 1. Rearrangethe equationsin (4.2.2) in lexicographicorderof the
free termsb(hi~0~. Arrangethe summandsin the left hand sidesare accordingto
the lexicographicorderof theunknownsX(,, o)’ / = (i, a). To verify the condition
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det (X~”~’~)~ 0 choose functions ~ so that the matrix (A~’,~0)were lo-

wertriangularwith units on the main diagonal(here ~ a
1) is a numberof a row,

(i, a) is a numberof a column).For this it sufficiesto set

q0,ifi=i1,whereq0q...q,”,a”(i1,...,i~);

a), I =

0, if i’/=i1

Thisprovesour statement.

Now, return to the proof of the theorem,which we finishby inductionin the
order of A. The statementof the theorem is trivial for operatorsA1 E
Supposeit is true for all operatorsA1 E 3,,(11)~1< k. Consideran operatorAk E

E ~(ID. On W, it is presentablein the form

Ak = smblAk + Ak_i,

whereAk_i E ~k—i~~) Forany positiveintegerr thereexistoperators3~,E 31(IJ)
and0, E 3k_l(ID suchthat

smblAk I F,(~)= smbl(~3~,0 o1) I F,(IT).

Therefore

A~F,(ID=(~~‘ 001 _(~3~,,o0~—

— smbI(~ 3~, 0 os)) + Ak_i ~

where

~ 0 0, — smbl(~ o o,) E ~1(ID.
This formula and inductive hypothesisimply the statementof the theoremfor
operatorsfrom ~k~’

§ 5. FREE COEFFICIENTS OF A SECONDARY OPERATOR

5.1. As it was noted in n. 2.4, the coefficients~ of the secondaryoperator
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are expressedby recursiveformula(2.4.5) in termsof coefficientsa~’~~’0of
the generatingoperatorV. The latter are independentin generalcase,i.e. there

are no relations betweenthem. Hence to determinethe operator3~in general
caseit is necessaryto defineall the coefficientsof thegeneratingoperator.

1f• coefficients of are symmetric, then the expressionsof coefficients
~ r = 1, 2 s — 1 in termsof coefficientsof the generatingoperator
are the relationsbetweenthe latter ones,becausea11tr - i.~ = au1ir_I~1+1..i5ir

~ 01... Op_i °r+i- o~0

due to symmetricity. These relations are hint to existence of a family of inde-
pendent coefficients of the generating operatorin termsof which all the other

coefficientsof V, henceall theothercoefficientsof
3U areexpressed.

DEFINITION. A family of coefficients of the secondaryoperatorS~is a family

of free generators,if the coefficients of this family are independentand all

the othercoefficientsof; areexpressedin termsof them.

5.2. Now, give a constructivemethod of choosingfamilies of free generators

for an operator; with symmetriccoefficients.
First, note that in general casesymmetriccoefficientsof 3.,~,satisfy no condi-

tionsexcept(2.4.4).Rewritetheseconditionsin the following form

(5.2.1)

fors = 1,2,. . . , k;f = 1,2, . . . , n;i
1 i~= 1,2, . . . , m; andany a1, . . . , a~.

Since relations (5.2.1) connect only coefficients of the samehomogeneous
component3~,the searchfor a family of free generatorsof3~is reducedto that
for eachof its homogeneouscomponents.Sinceeachhomogeneouscomponent

of 3,~,is a secondaryoperator,in what follows wewill seekfree generatorsfor an
homogeneoussecondaryoperatorwith symmetriccoefficients

a”
= ~ ~ ap” ap~

I1

1k Oj’
01

(The casek = 1 is clear).

Since coefficients a~~”are symmetric, we will always assumethat <‘two-

-storeyed>> multiindices ( ~) in these coefficients are arrangedin decreasing

lexicographicorder, i.e. (~‘) ~ ~ . . ~ (~‘)(Here (~) ~ (~‘)if and
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only if (~r~sri’ . . . , i,,~) ~ (i,,~ ~ ~ 1,1
1r+ ~,)with respect to the lexico-

graphicorder).

The coefficients~ ~with I 01 I + ... + I a~I = R are referedto as coefficients

of level R.
Considereachof the relations(5.2.1)as a linearalgebraicequationfor coeffi-

cients~ °k ~ ~ of levelR + 1 = I °~I+ ... + I UkI + 1 generated

by coefficeints~ of level R. Thus coefficientsof level R + 1 are strainedby

the system(5.2.1) of linear algebraicequationsgeneratedby coefficientsof level
R. No other constraintsare imposedon coefficientsof level R + 1, in general.

Freeunknownsof this linearsystemare called free generatorsof level R + 1.
Further, by induction in R we get that the union of free generatorsof all

levels is a family of free generatorsfor the homogeneousoperator3~.At the

inductivestepall the coefficientsa~’~of level 0 are supposedto be free.
Note that free generatorsof eachlevel may be chosenthat they were coeffi-

cientsof a generatingoperator.

5.3. Now, illustrate the said in n. 5.2 by the detailedanalysisfor n = 1. In this
casethe homogeneousoperator3~is expressedin the form

a”
a~~’ , k~2,

V /ica a~fk
/1 3k

andrelations(5.2.1)areof the form

k
~‘ ~1 r 1k —

L—....~ ‘i’r ‘k
r= 1

‘k 1,2 m; ‘1’~~’’k~ 1,2

Sincemultiindices( ~r) r = 1, 2, . . . , k, are arrangedin the decreasinglexico-

graphic order in each coefficient a~,’(’,then therethereis the sameset of top

indices i~~ ~ i~in any term of (5.3.1). Thereforethe systemof linear
equations(5.3.1) generatedby all coefficientsof level R splits into subsystems

~“ each of which connectscoefficients of level R + 1 with the same set of
top indices i

1 ~ ~ Hence we must study an arbitrary subsystemof the
~

1k

form SR+1’
Reducethe system~ to triangular form. For this arrangethe unknowns



62 V.N. GUSYATNIKOVA, A.M. VINOGRADOV, V.A. YUMAGUZHIN

a,’~’~’in eachequationin accordancewith the decreasinglexicographicorderof

their multiindices (1 ,4), i.e. we put the unknowna~1 to the left of the

unknown a~~”if . ,/,,~)> (li,...,
1k~with respect to the lexicographic

order, and arrangeequationsof this systemin accordancewith the decreasing

lexicographicorderof multiindices(/ ,/,~)of freetermsD(a,~~).

LEMMA 5.3.1. A systemof linear equationsS~÷~’with indicated ordering of

equationsand theunknownsis of the triangular form.

Proof. Considertwo neighbourequationsof the system
5

1i~~tk

a~’2.~ . +

/1 + 112”Jk

and

— fl( ij•..l~a
1 +11 1 ~ ~a1

1 2 k 1

Since~~1’~2’ ‘‘k~> (j1~l2~. . . , l,~), then + 1,12,... ‘~k~> (1~+ 1,12

COROLLARY1. The maui unknownsin the triangular system~ are a~2~

suchthat

i i1 >2

11~ ‘2

Proof. Let thecoefficienta~ ~k satisfy . ~i ~ ~2 Thenit is thefirst in the
li 1 /2

equation

ah1

12c+ =D(a~’2’I~. )
11 ‘/2”’k

of the triangularsystem~ i.e., it is a mainunknown.And vice versa. •

COROLLARY2. Free unknownsof the triangular systemS~’~,’are the unknowns

a,’”,”, whichsatisfyoneofthefolio wing conditions:

1) i
1>i2andj1=0;

2) i1=i2andj1=/2.

proof (i ‘~1) ~( ~ ) fails if and only if either i1 >i2 and!1= 0 or i1 =i2 and

/1 ‘2~
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Thus we get

THEOREM5.3.1. Let n = I and ; be a homogeneoussecondaryoperator with

symmetric coefficients. Then the family of its coefficientsa’~~is a family

offreegeneratorsif theysatisfyoneofthefollowingconditions:
1) i1)’i2andj1=0;

2) i1=i2 and

Now, choosea family of free generatorsof ~ so that its elementswerecoeffi-

cients of the generating operatorV. For this denoteby A a family of free

unknownsof S~’~’~obtianedin Corollary 2 of Lemma 5.3.1.Thenfix a positive

integers and considerelementsa1~’ ~‘~“ E A with ~ >s. Transfer‘k — s units from

the index /,~of eachof theseelementsin an arbitraryway into k — 1 first indices

/~/2~ ‘‘k—i of this element.Denoteby A~the set of elementsobtainedin this

way.

LEMMA 5.3.2. For any s the elementsof A1 are expressedin termsof elements

ofA0 via the equationsof the system~

Proof The lemmais proved by induction in s. The first stepof induction,s = 0,

is trivial. Supposethat elementsof the families A1,A2, . . . , A1 are expressedin

termsof elementsof A0. Dueto (5.3.1)

k—i
V~

111rk—itk , 11k—i1k — j’-~j~, jj+1jsjj~S+i ~
r= 1

where a,~’7”) “ ~belongto A~,1 ~r~k —1 and thereforeareexpressedin

terms of elementsof A
0. Hencea’~’’~~1 is expressedin termsof elements

ofA0. U

COROLLARY. ElementsofA are expressedin termsofelementsofA0.

LEMMA 5.3.3.

A ={a~1’2i’!~_1.hh1 a’. 2
9cl~kEA}0 j~+1k12...Ik_1 0 ‘1’2’kl’k

Proof Let a~~’~’’,~’EA
0.If i1 >i2 then this element is recoveredfrom the

element a~,1,’21i~~E A by transferringall the units of the last lower indexto the

first lower index. If i = i then this elementis recoveredfrom a’1
121k E A1 2 1

212...l1—12
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in the same way.

Thuswe may takeelementsof A0 as free unknownsin thesystem~

COROLLARY. ~ EA0 if and only if it satisfiesoneof the following

conditions:

I) 11>~2 and (;“~)~(~);
2)ii=i2and(~_i)~>(14~1).

Thus we have

THEOREM 5.3.2. Let n = 1 and 3~be a homogeneoussecondaryoperator with

symmetriccoefficients. Then the family of its coefficientsa~’~~’satisfying

oneofthe conditions:

I) 11>12 and ~

2) i~= i2 and
1k1 ~
‘k—i J~ 12

is a family offreegenerators.

5.4. We obtained the following resultsby the samereasoningas in n.n. 5.2 and

5.3.

THEOREM 5.4.1. Suppose

a”
— V’ 111k ________

3v — . L_, 010k ap’i ap’~
1k 01

01

is a homogeneoussecondaryoperatorwith symmetriccoefficients.Then

I. If n = 2, k> 2, then the family of its coefficientsa,’~Uk satisfyingone

ofthefollowingconditions:

a) i
1>i2,o1=(0,0);

b) i1 = ~ a1 = (i + 1, 0), 02 = (i, 2/ + 1), wherei, j = 0, 1, 2

c) i1 = i2, 01 = (1 + 1,0); a2= (i, 2/), a3>(i,j), where i,j = 0,1,2

d) i1 = j2~ 01 = 02
is a family offreegenerators.
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II. If n > 2 and k = 2, then the family of coefficients~ of ; satisfying

oneofthefollowingconditions:

a) i1>i2,o1=(0,0 0);
b) i1 = i2, a~= (r, i + 1, 0, . . . , 0), a2 = (r, i, ~), where r, ~ are multiindices

and I I is odd;
c) i1 = i2, a1 = a2

is a family offreegenerators.

In general, the direct analysisof the systemof linear equationsconnecting
coefficients of the samelevel is very difficult and cumbersome.We intend to

return elsewhereto the problemof finding freegeneratorsof secondaryoperators
starting from anotherarguments.
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