Secondary differential operators

V.N. GUSYATNIKOVA
Department of Mathematics, Bashkir State University, Ufa, 450025, USSR
A.M. VINOGRADOV
Department of Mathematics and Mechanics, Moscow State University, Moscow, 117234, USSR
V.A. YUMAGUZHIN
Department of Mathematics, Bashkir State University, Ufa, 450025, USSR

Abstract

Let Ψ be an arbitrary sustem of partial (non-linear) differential equations. Higher infinitesimal symmetries of $\mathrm{\Psi}$ may be interpreted as vector fields on the emanifold, Sol Ψ of all local solutions of this system. The paper deals with construction of differential operators of arbitrary orders on Sol Ψ. These approaches to construction of the theory of these operators, geometric and functional are presented, and their equivalence is proved when $\mathrm{\varphi}$ is the trivial equation. Coincidence of «extrinsic» and «intrinsic» geometric secondary operators is proved for an arbitrary system Ч. It is shown that each geometric secondary operator may be approximated by a sum of compositions of evolution differentiations with any possible accuracy, a description of geometric secondary operators in local coordinates is also given. These results are obtained by studying the geometry of infinite jets and infinitely prolonged equations.

INTRODUCTION

It is well known that ordinary differential equations describing classical particles are characteristics for partial differential equations describing corresponding quantum particles. This is the basic line connecting classical and quantum mechanics of particles. In particular, the quantization problem may be viewed as the problem to reconstruct partial differential equation if ordinary equations

Key-Words: Differential equation; Jet bundle; Symmetries of differential equations; Secondary differential operator.

1980 Mathematics Subject Classification: 35 A, 58 A 20, 81 C 99.
of characteristics are known.
Having this in mind one can expect that classical field theory is similarly connected with the quantum field theory. Assuming this one is forced to postulate the existence of such equations, of genuine equations of quantum fields whose characteristics are described by partial differential equations of classical fields. Thise hypotetical equations, as well as the hypotetical operators in their left-hand sides, may be called secondary ones, or more speculatively, secondary quantized, since partial differential operators may be considered as quantized ordinary operators and in quantum field theory the quantization process starts with partial equations, i.e. quantized equations. Thus our problem is to find the rigorous mathematical notion of secondary differential operators.

In fact, nowadays we know that there exist other secondary notions. For example, higher infinitesimal symmetries of partial differential equations are nothing but secondary vector fields. Similarly, conservation laws for partial differential equations may be interpreted as secondary differentail forms, etc. . In other words, we observe the existence of the next level differential calculus which may be called secondary.

Our interest in the secondary differential calculus arises from the hypothesis that it is the unique natural language for the quantum field theory in the same sense as the classical differential calculus is natural for the classical field theory. Further motivations and general description of the Secondary Calculus the reader may find in [1], [2].

In this paper we answer the question what are secondary differential operators. For simplicity only scalar operators are considered here. Our main tool is the geometry of infinite jet manifolds and infinitely prolonged partial differential equations in the spirit of [3].

The main results of this paper was annunced in [4].

§ 1. PRELIMINARIES

In this paper we deal with the category of smooth manifolds and smooth maps.

Some necessary notions and results from [5], [3] are given in this section in the convenient form.
1.1. Jet space. Let N be a smooth manifold, $\operatorname{dim} N=m+n$. The class of n --dimensional submanifolds $L \subset N$ mutually tangent to each others with the order k tangency at point $x \in N$ will be called the k-jet of an n-dimiensional submanifold at x and denoted $[L]_{x}^{k}$.

$$
N_{m}^{k}(x)=\left\{[L]_{x}^{k} \mid \operatorname{dim} L=n, x \in L\right\} \text { and } N_{m}^{k}=\bigcup_{x} N_{m}^{k}(x) .
$$

The set N_{m}^{k} has a natural structure of a smooth manifold. For $k \geqslant 1$ there are projections $\boldsymbol{q}_{k, 1}: N_{m}^{k} \longrightarrow N_{m}^{1}$,

$$
\Pi_{k, 1}\left([L]_{x}^{k}\right)=[L]_{x}^{I}
$$

If $L \subset N$ then there is a smooth map

$$
j_{k}(L): L \rightarrow N_{m}^{k}, \quad j_{k}(L)(x)=[L]_{x}^{k} .
$$

Clearly $\boldsymbol{q}_{k, 1}{ }^{\circ} j_{k}(L)=j_{l}(L)$. The inverse limit of the chain of maps

$$
\ldots \rightarrow N_{m}^{k} \xrightarrow{\mathbb{q}_{k, k-1}} \ldots \xrightarrow{\mathbb{q}_{1,9}} N_{m}^{0}=N
$$

will be denoted by N_{m}^{∞}. Denote the limit of the maps $j_{k}(L), k \rightarrow \infty$ by $j_{c,}(L)$: $: L \longrightarrow N_{m}^{\infty}$ and the natural projection $N_{m}^{\infty} \longrightarrow N_{m}^{k}$ by $\|_{\infty, k}$.

The set $N_{m}^{k}, 0 \leqslant k \leqslant \infty$ is called the manifold of k-jets of n-dimensional submanifolds of N. Then we set $F_{k}(N)=C^{\infty}\left(N_{m}^{k}\right)$ and $F(N)$ denotes the direct limit of the chain of maps

$$
\ldots \longrightarrow F_{k-1}(N) \xrightarrow{\prod_{k, k-1}^{*}} F_{k}(N) \longrightarrow \ldots
$$

Let M^{n} be an n-dimensional manifold and $\mathbb{I}: E \longrightarrow M^{n}$ a submersion, $\operatorname{dim} E=$ $=m+n$. Then the set of k-jets of images of local sections of this submersion forms an open set $J^{k} \mathbb{q}$ in E_{m}^{k} (called the manifold of k-jets of the bundle \mathbb{q} if I is a bundle). The set of local sections of a submersion I will be denoted by $\Gamma_{\mathrm{loc}}(\mathbb{1})$ and U_{s} denotes the domain of s for $s \in \Gamma_{\mathrm{loc}}(\mathbb{\mathbb { I }})$. We set

$$
j_{k}(s)=j_{k}(L) \circ s,
$$

where $L=s\left(U_{s}\right)$, and

$$
\mathbb{ף}_{k}=\mathbb{\Pi} \circ \mathbb{\Pi}_{k, 0}, \quad F_{k}(\mathbb{\Pi})=C^{\infty}\left(J^{k}(\mathbb{\|})\right), \quad 0 \leqslant k \leqslant \infty, \quad F(\mathbb{\Pi})=\lim _{k \rightarrow \infty} \operatorname{dir} F_{k}(\mathbb{\Pi}) .
$$

Let $U=V^{n} \times U^{m}$, where V^{n} (resp. U^{m}) be a domain in \mathbb{R}^{n} (resp. in \mathbb{R}^{m}), and (q, p), where $q=\left(q_{1}, \ldots, q_{n}\right), p=\left(p^{1}, \ldots, p^{m}\right)$, a corresponding coordinate system. Then on $J^{k} \alpha, 0 \leqslant k \leqslant \infty$, where $\alpha: U \longrightarrow V^{n}$ is the natural projection, the coordinate system arises:

$$
\begin{aligned}
& \quad q_{j}, p_{\mathrm{o}}^{i} \\
& j=1,2, \ldots, n ; i=1,2, \ldots, m ; \sigma=\left(i_{1}, \ldots, i_{n}\right), i_{1}, \ldots, i_{n}=0,1,2, \ldots,|\sigma|= \\
& =i_{1}+\ldots,+i_{n} .
\end{aligned}
$$

Functions p_{σ}^{i} are uniquely determined by the following property

$$
j_{k}(s)^{*}\left(p_{\sigma}^{i}\right)=\frac{\partial^{|\sigma|} s^{i}}{\partial q_{1}^{i_{1}} \ldots \partial q_{n}^{\xi_{n}}}
$$

where $s \in \Gamma(\alpha)$ is defined by $p^{i}=s^{i}(q)$.
Every diffeomorphism $f: U \longrightarrow U^{\prime} \subset N$ naturally induces diffeomorphisms $f_{(k)}: J^{k} \alpha \longrightarrow N_{m}^{k}$ due to which the above coordinates on $J^{k} \alpha$ are transferred to im $f_{(k)}$. Below they are called the canonical local coordinates and the domain im $f_{(k)}$ with these coordiantes is called a canonical chart.

Let $\Lambda^{i}(M)$ denote the $C^{\infty}(M)$-module of smooth differential i-forms on a manifold M. We set

$$
\begin{aligned}
& C \Lambda^{i}\left(N_{m}^{k}\right)=\left\{\omega \in \Lambda^{i}\left(N_{m}^{k}\right) \mid j_{k}\left(L^{n}\right)^{*} \omega=0 \text { for any } L^{n} \subset N\right\}, \\
& \mathcal{C} \Lambda^{i}\left(J^{k} \mathbb{q}\right)=\left\{\omega \in \Lambda^{i}\left(J^{k} \mathbb{q}\right) \mid j_{k}(s)^{*} \omega=0 \text { for any } s \in \Gamma_{\mathrm{loc}}(\mathbb{Q})\right\} .
\end{aligned}
$$

Clearly,

$$
\|_{k, l}^{*}\left(C \Lambda^{i}\left(N_{m}^{l}\right)\right) \subset \subset \Lambda^{i}\left(N_{m}^{k}\right) \text { and } \mathbb{q}_{k, l}^{*}\left(C \Lambda^{i}\left(J^{l} \mathbb{q}\right)\right) \subset \subset \Lambda^{i}\left(J^{k} \mathbb{q}\right)
$$

which allows one to define submodules

$$
C \Lambda^{i}\left(\Lambda_{m}^{\infty}\right) \subset \Lambda^{i}\left(N_{m}^{\infty}\right) \text { and } C \Lambda^{i}(\mathbb{\|}) \subset \Lambda^{i}(\mathbb{\|})
$$

where

$$
\begin{aligned}
& \Lambda^{i}\left(N_{m}^{\infty}\right)=\lim _{k \rightarrow \infty} \operatorname{dir} \Lambda^{i}\left(\Lambda_{m}^{k}\right) \text { and } \Lambda^{i}(\mathbb{q})=\lim _{k \rightarrow \infty} \operatorname{dir} \Lambda^{i}\left(J^{k} \mathbb{q}\right), \\
& C \Lambda^{i}\left(N_{m}^{\infty}\right)=\lim _{k \rightarrow \infty} \operatorname{dir} C \Lambda^{i}\left(N_{m}^{k}\right) \text { and } C \Lambda^{i}(\mathbb{q})=\lim _{k \rightarrow \infty} \operatorname{dir} C \Lambda^{i}\left(J^{k} \mathbb{q}\right) .
\end{aligned}
$$

The submodule $C \Lambda^{1}\left(N_{m}^{k}\right) \subset \Lambda^{1}\left(N_{m}^{k}\right)$ is of constant rank and dualizing determines the distribution $\theta_{k} \longrightarrow \mathcal{C}_{\theta_{k}} \subset T_{\theta_{k}}\left(N_{m}^{k}\right)$ called the Cartan distribution. If $\theta \in N_{m}^{\infty}$ and $\theta=\left\{\theta_{k}\right\}$, where $\theta_{k} \in N_{m}, \mathbb{I}_{k, 1}\left(\theta_{k}\right)=\theta_{l}$, then we determine the tangent space $T_{\theta}\left(N_{m}^{\infty}\right)$ as the inverse limit of the chain of linear maps

$$
\ldots \longrightarrow T_{\theta_{k}}\left(N_{m}^{k}\right) \xrightarrow{\mathrm{d} \boldsymbol{q}_{k, k-1}} T_{\theta_{k-1}}\left(N_{m}^{k-1}\right) \longrightarrow \ldots
$$

Since $d \mathbb{q}_{k, k-1}\left(C_{\theta_{k}}\right) \subset C_{\theta_{k-1}}$, there is defined the inverse limit, C_{θ}, of the chain

$$
\cdots \rightarrow C_{\theta_{k}} \xrightarrow{\mathrm{~d} \boldsymbol{q}_{k, k}} C_{\theta_{k-1}} \longrightarrow \ldots
$$

The distribution $\mathcal{C}(N): \theta \longrightarrow \mathrm{C}_{\theta}$ is called the Cartan distribution on N_{m}^{∞}. The module $C \Lambda^{1}\left(N_{m}^{\infty}\right)$ annihilating the Cartan distribution within the canonical chart is generated by the forms

$$
U\left(p_{\sigma}^{i}\right)=\mathrm{d} p_{\sigma}^{i}-\sum_{j=1}^{n} p_{\sigma+1_{j}}^{i} \mathrm{~d} q_{j}
$$

where $\sigma+l_{i}=\left(i_{1}, \ldots, i_{j-1}, i_{j}+1, i_{j+1}, \ldots, i_{n}\right),|\sigma| \leqslant k$.
The maximal integral manifolds of the Cartan distribution N_{m}^{∞} is of dimension n and locally is of the form im $j_{\infty}(L)$.
1.2. Differential equations. In what follows a systems of non-linear partial differntial equations is considered as a closed submanifold in N_{m}^{k} (in J^{k}). Here n is the number of independent variables m the number of dependent variables, k the order of the system. Instead of «the system of equations» we will just say «equation».

Let $\Psi \subset N_{m}^{k}\left(J^{k} \mathbb{T}\right)$ be an equation. A submanifold $L^{n} \subset N\left(s \subset \Gamma_{\mathrm{loc}}(\mathbb{Q})\right)$ is called its solutions if im $j_{k}(L) \subset Ч\left(\operatorname{im} j_{k} s \subset \Psi\right)$. The set of solutions is denoted by Sol Y.

Define the i-th prolongation $\Psi_{i} \subset N_{m}^{k+i}\left(\Psi_{i} \subset J^{k+i} \mathbb{q}\right)$ of the equation $Y \subset N_{m}^{k}$ ($\Psi \subset J^{k}$) assuming that $[L]_{x}^{k+i} \subset บ_{i}$ if and only if im $j_{k}(L)$ is tangent to Y at $j_{k}(L)(x)$ with tangency of order i. Then $\mathbb{q}_{i, r}\left(\Psi_{i}\right) \subset \Psi_{r}$ for $i \geqslant r$. The inverse limit of the system

$$
\ldots \longleftarrow \mathrm{Y}_{i} \longleftarrow{\mathbb{\mathbb { q } _ { i + 1 , i }} \mathrm{k}_{i+1}} \mathrm{Y}_{i+1} \longleftarrow \ldots
$$

is denoted by Ψ_{∞}.
The equation Ψ called a formally integrable equation, if each its prolongation Y_{i} is a smooth submanifold in N_{m}^{k+i} (in $J^{k+i} \mathrm{q}_{\text {) }}$) and projections $\mathbb{Y}_{k+i+1, k+i} \mid \Psi_{i+1}: \Psi_{i+1} \rightarrow \mathrm{Y}_{i}$ are vector bundles. Below we only deal with formally integrable equations.

We set

$$
F(\Psi)=F(N)\left|Ч_{\infty}\left(F(\mathbb{\mathbb { 1 }}) \mid \Psi_{\infty}\right), \quad \Lambda^{q}(\Psi)=\Lambda^{q}\left(N_{m}^{\infty}\right)\right| \Psi_{\infty} \quad\left(=\Lambda^{q}(\mathbb{q}) \mid \Psi_{\infty}\right)
$$

and

$$
C \Lambda^{q}(\mathrm{\Psi})=C \Lambda^{q}\left(N_{m}^{\infty}\right) \mid \Psi_{\infty} \quad\left(=\mathcal{C} \Lambda^{q}(\mathbb{q}) \mid \Psi_{\infty}\right)
$$

In case $\Psi \subset J^{k} \mathbb{q}$ the subalgebra $\left(\|_{\infty} \mid \Psi_{\infty}\right)^{*}\left(C^{\infty}(M)\right)$ in $F(\Psi)$ is identified with $C^{\infty}(M)$, and the subspace $\left(\mathcal{G}_{\infty} \mid \Psi_{\infty}\right)^{*}\left(\Lambda^{q}(M)\right)$ in $\Lambda^{q}(\Psi)$ with $\Lambda^{q}(M)$. The restriction of the Cartan distribution on Ψ_{∞} is denoted by $C(\Psi)$.
1.3. Symmetries of differential equations. Denote by $D(F(\Psi))$ the set of all differentiations of the algebra $F(\Psi)$ (i.e. the set of all vector on Ψ_{∞}). The Lie derivative of the form $\omega \in \Lambda^{q}(\Psi)$ along the vector field X is denoted by $X(\omega)$.

We set

$$
\begin{aligned}
& D_{C}(F(Ч))=\left\{X \in D(F(Ч)) \mid X\left(C \Lambda^{1}(\Psi)\right) \subset C \Lambda^{1}(\cup)\right\} \\
& \left.C D(F(Ч))=\{X \in D(F(Ч)) \mid X\lrcorner \mathcal{C} \Lambda^{1}(\Psi)=0\right\}
\end{aligned}
$$

The fields $X \in D_{C}(F(\Psi))$ are called \mathcal{C}-fields and the fields $X \in \mathcal{C} D(F(\Psi))$ are called trivial C -fields.

We need the following properties of \mathcal{C}-fields (see [3], [5]):

1) $D_{C}(F(\Psi))$ is a subalgebra in the Lie algebra $D(F(\Psi))$;
2) $C D(F(\Psi))$ is the ideal in the Lie algebra $D_{C}(F(\Psi))$;
3) $X \in D_{C}(F(Ч))$ if and only if $[X, \mathcal{C} D(F(\Psi))] \subset \mathcal{C}(F(Ч))$.

The quotient algebra $\operatorname{Sym} \Psi=D_{C}(F(\Psi)) / C D(F(\Psi))$ is called the algebra of intrinsic infinitesimal symmetries of φ.

If $\Psi_{\infty}=N_{m}^{\infty}\left(=J^{\infty} \mathbb{q}\right)$ then we write $x(N)(x(\mathbb{T}))$ instead of Sym Ψ.
4) Any \mathcal{C}-field $X \in D_{C}(F(Y))$ is a restriction on Ψ_{∞} of a C-field $Y \in D_{C}(F(N))$;
5) $X \in C D(F(\mathrm{Y}))$ if and only if a C-field $Y \in D_{C}(F(N))$ such that $X=Y \mid \cup_{\infty}$ can be restricted on im $J_{\infty}\left(L^{n}\right)$ for any $L^{n} \subset N$.

Given a bundle $: E \rightarrow M^{n}$ any vector field X on M^{n} determines the vector field $\hat{X} \in \mathcal{C} D(F(\Psi))$ by the formula

$$
\hat{X}(f)\left(j_{\infty}(s)(x)\right)=X\left(j_{\infty}(s)^{*} f\right)(x)
$$

where $f \in F(\mathbb{I}), s \in \Gamma_{\mathrm{loc}}(\mathbb{I}), x \in M$.
Let q_{j}, p_{σ}^{i} be canonical local coordinates on $J^{\infty} \mathbb{q}$. Then

$$
\frac{\hat{\partial}}{\partial q_{j}}=\frac{\partial}{\partial q_{j}}+\sum_{i, \sigma} p_{\sigma+1_{j}} \frac{\partial}{\partial p_{\sigma}^{i}}
$$

Denote the operators $\frac{\hat{\partial}}{\partial q_{j}}$ by D_{j}.
Put $D(M)$ for the set of all the vector fields on M.
If $X=\sum_{i=1}^{n} f_{i} \frac{\partial}{\partial q_{i}} \in D(M)$, then $\hat{X}=\sum_{i=1}^{n} f_{i} \cdot D_{i}$.
1.4. \mathcal{C}-differential operators. The algebra $F(\Psi)$ is naturally filtered by subalgebras $F_{i}(\Psi)$, where $F_{i}(\Psi)$ is the image of $C^{\infty}\left(\Psi_{i-k}\right)$ under $\mathbb{q}_{\infty, i}^{*}$ (here k is the order of Ψ). An \mathbb{R}-linear map $\Delta: F(\Psi) \longrightarrow F(\Psi)$ is called a linear differential operator of order $\leqslant l$ if

1) $\Delta\left(F_{i}(Ч)\right) \subset F_{i+j}(\mathrm{Y}), j=j(i)$;
2) $\delta_{f_{0}}\left(\ldots\left(\delta_{f_{1}}(\Delta) \ldots\right)=0\right.$ for any $f_{0}, \ldots, f_{1} \in F(\Psi)$, where $\delta_{f}(\Delta)=[\Delta, f]$. The details see in [3].

Differential operators from a filtered $F(\Psi)$-module P into a filtered $f(\Psi)$ -
-module Q are similarly defined.
The set of all linear differential operators (of order $\leqslant l$) from $\boldsymbol{F}(\mathrm{Y})$ into itself is denoted by $\operatorname{Diff}(F(\mathrm{Y}))\left(\operatorname{Diff}_{l}(F(\mathrm{Y}))\right)$.

An operator $\triangle \in \operatorname{Diff}(F(N))$ is a C-differential operator if for any submanifold $L^{n} \subset N$ the operator Δ admits the restriction onto the submanifold im $j_{\infty}\left(L^{n}\right) \subset$ $\subset N_{m}^{\infty}$.

An operator $\Delta \in \operatorname{Diff}(F(\Psi))$ is a C-differential operator if there is a C-differential operator $\Delta^{\prime} \in \operatorname{Diff}(F(N))$ such that $\triangle=\Delta^{\prime} \mid \Psi_{\infty}$.

The $F(\Psi)$ algebra of \mathcal{C}-differential operators is denoted by $\mathcal{C} \operatorname{Diff}(F(\Psi))$.
The following statements hold (see [5]):

1) The algebra of \mathcal{C}-differential operators $\mathcal{C} \operatorname{Diff}(F(\Psi))$ is generated by C-differential operators of order $\leqslant 1$
2) If $\Psi \subset J^{k} \mathbb{\|}$, then the algebra $\mathcal{C} \operatorname{Diff}(F(\Psi))$ is generated by \mathcal{C}-differential operators of the form $\hat{X} \mid \Psi_{\infty}$, where $X \in D(M)$, and functions $\varphi \in F(Ч)$.

The most important example of \mathcal{C}-differential operators are those of universal linearization (see [5]). Recall that if P is an $F(\mathbb{\Phi})$-module of smooth sections of a finite-dimensional vector bundle over $J^{\infty} \mathbb{I}$ and $p \in P$, then in canonical coordinates q_{j}, p_{o}^{i} the corresponding universal linearization operator l_{p} is of the form

$$
l_{p}=\left(\begin{array}{cccc}
\sum_{\sigma} \frac{\partial F_{1}}{\partial p_{\sigma}^{1}} \circ D_{\sigma} & \cdots & \sum_{\sigma} \frac{\partial F_{1}}{\partial p_{\sigma}^{m}} \circ D_{\sigma} \\
\cdots & \ldots & \ldots & \ldots \\
\sum_{\sigma} \frac{\partial F_{r}}{\partial p_{\sigma}^{1}} \circ D_{\sigma} & \cdots & \sum_{\sigma} & \frac{\partial F_{r}}{\partial p_{\sigma}^{m}} \circ D_{\sigma}
\end{array}\right),
$$

where $p=\left(F_{1}, \ldots, F_{r}\right), F_{i} \in F(\mathbb{q}) ; D_{\sigma}=D_{1}^{i_{1}} \circ \ldots \circ D_{n}^{i_{n}}, \sigma=\left(i_{1}, \ldots, i_{n}\right)$.
Note that $l_{p} \equiv 0$ if and only if $F_{i}=F_{i}\left(q_{1}, \ldots, q_{n}\right) \in C^{\infty}\left(M^{n}\right), i=1,2, \ldots, r$.
Besides,

$$
l_{f p}=f \cdot l_{p}+p \cdot l_{f}
$$

where $p \in P, f \in F(\boldsymbol{q})$.
1.5. Local regular differential equations. Denote by $I\left(\mathrm{Y}_{\infty}\right)$ the ideal in $F(N)$ considering of functions vanishing on Ψ_{∞}. Let the equation Ψ in a neighbourhood $V \subset N_{m}^{k}$ be determined by a collection of functions $\left\{\mathscr{S}_{\nu}\right\} \nu=1,2, \ldots, R$, i.e.

$$
\mathrm{\Psi} \cap V=\left\{\theta_{k} \in N_{m}^{k} \mid \mathscr{S}_{\nu}\left(\theta_{k}\right)=0, \nu=1,2, \ldots, R\right\}
$$

Then the functions of $C \operatorname{Diff}\left(\mathscr{S}_{1}\right), \nu=1,2, \ldots, R$ belong to $I\left(\Psi_{\infty}\right)$ in the neighnourhood $\mathbb{I}_{\infty, k}^{-1}(V)$. If in this neighbourhood $I\left(\Psi_{\infty}\right)=\sum_{\nu} \mathcal{C} \operatorname{Diff}\left(\mathscr{F}_{\nu}\right)$ then we
say that Ψ is regular in V. If for each point $\theta_{k} \in \Psi$ there exists its neighbourhood $V_{\theta_{k}} \subset N_{m}^{k}$ in which Ψ is regular, then we say that Ψ is locally regular.

We will need the following standard results of formal theory (see e.g. [6]).
Let equation Ψ be formally integrable and locally regular and $W^{\prime} \subset N_{m}^{\infty}$ a canonical chart with coordinates q_{j}, p_{σ}^{i} in a neighbourhood of a point from Ψ_{∞}. Then:

1) There is a domain $W \subset W^{\prime}$ such that coordinates q_{j} together with some of coordinates p_{σ}^{i} (we denote them by $p_{\bar{\sigma}}^{i}$ the remaining ones by $p_{\underline{\sigma}}^{i}$) form a coordinate system on $W \cap \mathrm{Y}_{\infty}$;
2) Restrictions \bar{p}_{σ}^{i} of coordinate functions p_{σ}^{i} onto Ψ_{∞} are functions in $\bar{q}_{j}, \bar{p}_{\bar{\sigma}}^{i}$, i.e. $\bar{p}_{\sigma}^{i}=f_{\sigma}^{i}\left(\bar{q}_{j}, \bar{p}_{\bar{\sigma}}^{i}\right)$, and the prolongation Y_{∞} is determined by equations

$$
p_{\underline{\sigma}}^{i}-f_{\underline{\sigma}}^{i}\left(q_{j}, p_{\bar{\sigma}}^{i}\right)=0 .
$$

In this work we only consider formally integrable and locally regular differential equations.

Everywhere in this work we denote the restriction of a function or an operator onto Ψ_{∞} barring the symbol of this function or operator, e.g. $\bar{f}=f \mid \Psi_{\infty}, \bar{D}_{j}=$ $=D_{j} \mid \Psi_{\infty}$. The summation sign for repeated indices and multi-indicies in cumbersome formulas will be often omitted.

We will need the following technical results.
Let $\mathrm{Y} \subset J^{k}$ I. An operator $\Delta \in \operatorname{Diff}(F(\mathrm{Y}))$ is called vertical if

$$
[\Delta, f]=0 \quad \text { for any } \quad f \in C^{\infty}(M)
$$

LEMMA 1.5.1. Each operator $\triangle \in \operatorname{Diff}(F(\Psi))$ in canonical coordinates $\bar{q}_{j}, \bar{p}_{\bar{\sigma}}^{i}$ on $W \cap \mathrm{Y}_{\infty}$ is uniquely represented in the form

$$
\Delta=\sum_{\sigma} \nabla_{\sigma} \circ \bar{D}_{\sigma}
$$

where ∇_{σ} are vertical operators and $\bar{D}_{\sigma}=\bar{D}_{1}^{i_{1}} \ldots \bar{D}_{n}^{i_{n}}, \sigma=\left(i_{1}, \ldots, i_{n}\right)$.

Proof. In coordinates $\bar{q}_{j}, \bar{p}_{\bar{\sigma}}^{i}$ on $W \cap \Psi_{\infty}$ an operator $\Delta \in \operatorname{Diff}(F(\Psi))$ is expressed in the form

$$
\Delta=\sum_{s+|\tau|=0} \sum_{\substack{i_{1}, \ldots, i_{s} \\ \sigma_{1}, \ldots, \sigma_{s}, \tau}} a_{\bar{\sigma}_{1}, \ldots,,_{s} \tau}^{i_{1}, \ldots, i_{s}} \frac{\partial^{s+|\tau|}}{\partial \bar{p}_{\bar{\sigma}_{1}}^{i_{1}} \ldots \partial \bar{p}_{\bar{\sigma}_{s}}^{i_{s}} \partial \bar{q}_{\tau}},
$$

where

$$
\frac{\partial^{|\tau|}}{\partial \bar{q}_{\tau}}=\left(\frac{\partial}{\partial \bar{q}_{1}}\right)^{j_{1}} \circ \ldots \circ\left(\frac{\partial}{\partial \bar{q}_{n}}\right)^{j_{n}}, \quad \tau=\left(j_{1}, \ldots, j_{n}\right)
$$

If in this formula we substitute operators $\left.\left(D_{j}-\sum_{i, \sigma} p_{\sigma+1_{j}}^{i} \frac{\partial}{\partial p_{\sigma}^{i}}\right) \right\rvert\, \Psi_{\infty}$ for $\frac{\partial}{\partial \bar{q}_{j}}$ then Δ may be reduced to the form $\Delta=\sum_{\sigma} \nabla_{\sigma} \circ \bar{D}_{\sigma}$, where operators ∇_{σ} contain the derivatives only with respect to variables $\bar{p} \underset{\bar{\sigma}}{i}$, and therefore commute with all functions $f \in C^{\infty}(M)$.

Now we will prove that this representation is the only possible one. Let $0=\sum_{\sigma} \nabla_{\sigma} \circ \bar{D}_{\sigma}=\sum_{|\sigma|=k} \nabla_{\sigma} \cdot \bar{D}_{\sigma}+$ terms of order $<k$ in \bar{D}_{j}. Consider the operator

$$
\delta_{\bar{q}_{T}}=\left(\delta_{\bar{q}_{1}}\right)^{i_{1}} \ldots\left(\delta_{\bar{q}_{n}}\right)^{i_{n}}
$$

where $=\left(i_{1}, \ldots, i_{n}\right),|\tau|=k$.
Obviously, for any multiindex $\sigma,|\sigma| \leqslant k$:

$$
\delta_{\bar{q}_{\tau}}\left(\bar{D}_{\sigma}\right)=\left\{\begin{array}{lll}
\tau! & \text { if } & \sigma=\tau \\
0 & \text { if } & \sigma \neq \tau
\end{array}\right.
$$

where τ ! is the product of factorials of all indices from multiindex τ. Then

$$
\begin{aligned}
0 & =\delta_{\bar{q}_{\tau}}(0)= \\
& =\delta_{\bar{q}_{\tau}}\left(\sum_{|\sigma|=k} \nabla_{\sigma} \circ \bar{D}_{\sigma}+\text { terms of order }<k \text { in } \bar{D}_{j}\right)= \\
& =\sum_{\sigma} \delta_{\bar{q}_{\tau}}\left(\nabla_{\sigma} \circ \bar{D}_{\sigma}\right)=\sum_{\sigma} \nabla_{\sigma} \circ \delta_{\bar{q}_{\tau}}\left(\bar{D}_{\sigma}\right)=\tau!\nabla_{\tau} .
\end{aligned}
$$

Hence, $\nabla_{\tau}=0,|\tau|=k$, etc. .

COROLLARY 1. Each operator $\triangle \in \operatorname{Diff}(F(\Psi))$ may be uniquely represented as the sum of two operators $\Delta=\square+\nabla$, where \square is a vertical operator, and $\nabla=$ $=\sum_{i} \square_{i} \circ \nabla_{i}$, where $\nabla_{i} \in \mathcal{C} \operatorname{Diff}\left(F(\Psi) \nabla_{i}(1)=0\right.$ and \square_{i} are vertical operators.

Proof. Proof consists in applying the standard technique of the partition of the unit and the statement of Lemma.

COROLLARY 2. Let $\quad \Delta=\sum_{i} \square_{i} \circ \nabla_{i} \in \operatorname{Diff}(F(\Psi))$, where $\quad \nabla_{i} \in \mathcal{C} \operatorname{Diff}(F(\Psi))$,
$\nabla_{i}(1)=0$ and operators \square_{i} are vertical. If \triangle is a vertical operator, then $\Delta=0$.
Proof. Express the operator Δ in canonical coordinates $\bar{q}_{j}, \bar{p}_{\bar{\sigma}}^{i}$ on $W \cap \mathrm{Y}_{\infty}$ in the form

$$
\Delta=\sum_{|\sigma|>0} \nabla_{\sigma} \circ \bar{D}_{\sigma},
$$

where ∇_{σ} are vertical operators. In what follows, $0=\left[\Delta, \bar{q}_{j}\right]=\sum_{\sigma^{\prime}} \nabla_{\sigma^{\prime}}{ }^{\circ} \bar{D}_{\sigma^{\prime}-1}$, where the j-th index of multiindices is $\geqslant 1$. By the uniqueness of representation $\nabla_{a^{\prime}}=0$ in lemma for all $\nabla_{o^{\prime}}$. Since it is true for all $j=1,2, \ldots, n$, then $\nabla_{\sigma}=0$ for all ∇_{o}.

REMARK. The same arguments as in the proof of Lemma show that each $\Delta \in$ $\in \operatorname{Diff}(F(\Psi))$ in canonical coordinates on $W \cap \Psi_{\infty}$ is uniquely represented in the form

$$
\Delta=\sum_{\sigma} \bar{D}_{\sigma} \circ \nabla_{\sigma},
$$

where ∇_{o} are vertical operators.
1.6. \bar{d}-cohomology and Euler operator. Let $\bar{\Lambda}^{q}(\Psi)=\Lambda^{q}(Ч) / C \Lambda^{q}(\Psi)$ and $\bar{\omega}=$ $=\omega+C \Lambda^{q}(Ч)$, for any $\omega \in \Lambda^{q}(\Psi)$. There is a natural decomposition (see [5])

$$
\Lambda^{q}(\mathrm{Y})=\Lambda_{0}^{q}(\mathrm{Y}) \oplus C \Lambda^{q}(\mathrm{Y})
$$

Forms from $\Lambda_{0}^{q}(\mathrm{Y})$ are horizontal.
The obvious inclusion $d\left(C \Lambda^{q}(\underline{Y})\right) \subset C \Lambda^{q+1}(\Psi)$ allows us to determine the differential $\overline{\mathrm{d}}: \bar{\Lambda}^{q}(\mathrm{\Psi}) \longrightarrow \bar{\Lambda}^{q+1}(\Psi)$. The cohomology of the arising complex

$$
0 \longrightarrow F(\mathrm{Y}) \xrightarrow{\overline{\mathrm{d}}} \bar{\Lambda}^{1}(\mathrm{Y}) \xrightarrow{\overline{\mathrm{d}}} \ldots \xrightarrow{\overline{\mathrm{~d}}} \bar{\Lambda}^{n-1}(\mathrm{Y}) \xrightarrow{\overline{\mathrm{d}}} \bar{\Lambda}^{n}(\mathrm{Y}) \longrightarrow 0
$$

is denoted by $\bar{H}^{q}(\Psi)$.
If $\Psi_{\infty}=N_{m}^{\infty}\left(J^{\infty} q\right)$ then instead of $\overline{\Lambda^{q}}(\Psi)$ and $\bar{H}^{q}(\Psi)$ we will write $\bar{\Lambda}^{q}(N)$ $\left(\bar{\Lambda}^{q}(\mathbb{T})\right)$ and $\bar{H}^{q}(N)\left(\bar{H}^{q}(\mathbb{T})\right)$ respectively.

On \mathcal{C}-differential operators there is defined a conjugation denoted by asterisk. Namely, if $\Delta: P \longrightarrow Q$, then $\Delta^{*}: \hat{Q} \longrightarrow \hat{P}$, where for an $F(Ч)$-module S we set (see [5])

$$
\hat{S}=\operatorname{Hom}_{F(\mathrm{Y})}\left(S, \bar{\Lambda}^{n}(Ч)\right) .
$$

If $\bar{\omega} \in \bar{\Lambda}^{n}(\Psi)$, then $l_{\bar{\omega}}: x(\mathbb{\|}) \longrightarrow \bar{\Lambda}^{n}(\mathbb{\|})$ and $l_{\bar{\omega}}: F(\mathbb{\|}) \longrightarrow \widehat{\chi(\mathbb{q})}$ for $\widehat{\bar{\Lambda}^{n}}(\mathbb{\|})=F(\mathbb{\|})$.

Elements of $\bar{\Lambda}^{n}(\mathbb{q})$ are interpreted as Lagrangian densities (see [5]). Then the classical Euler operator \mathscr{E} recovering the Euler-Lagrange equations from Lagrangians can be presented in the form

$$
\bar{\omega} \xrightarrow{\mathscr{G}} l_{\bar{\omega}}^{*}(1)=\mathscr{E}(\bar{\omega}),
$$

i.e. $l_{\frac{*}{\omega}}^{\omega}(1)=0$ is the Euler-Lagrange equation corresponding to the Lagrangian density $\bar{\omega}$.

In §3 we will need the following two facts which immediately follow from the properties of the universal linearization operator described above:

1) $l_{f \bar{\omega}}^{*}(1)=l_{\bar{\omega}}^{*}(f)$ for $f \in C^{\infty}(M)$;
2) If $\bar{\omega}=\mathrm{d} q_{1} \wedge \ldots \wedge \mathrm{~d} q_{n}\left(\bmod C \Lambda^{n}(\mathbb{q})\right.$, then $l_{f \bar{\omega}}^{*}=0$ if and only if $f \in C^{\infty}(M)$.

§2. SECONDARY DIFFERENTIAL OPERATORS. GEOMETRIC APPROACH

2.1. Guiding considerations. Scalar secondary differential operators in their simplest form should be operators acting on «smooth» functions determined on the «manifold» Sol Ψ of local solutions of the system of (non-linear) differential equations Ψ compatiable with the localisation operators. The latter means that if \square is a secondary operator, then $\square(f) \mid U=\square(f \mid U)$, where f is a «smooth» function on the «manifold» Sol q . However it would be unrealistic to try to determine a form of secondary operators when dealing directly with «manifolds» of Sol Y kind trying e.g. to determine the topology, C^{∞}-structure, etc on them. Instead we will consider the virtual bundle
(2.1.1) $\quad \Psi_{\infty} \ldots \rightarrow \operatorname{Sol} \Psi$.

Here we mean the following. The Cartan distribution on is completely integrable and its integral manifolds are nothing but the local solutions of Y. If the Frobenius theorems were true in the considered infinite dimensional case, then through any point of Ψ_{∞} the unique solution of Y would pass, hence Ψ_{∞} would be stratified into solutions. In other words, the «manifold» Sol Y might be identified with the «manifold» of integral manifolds of the Cartan distribution on Ψ_{∞}. Therefore Sol Ψ might be locally represented as the base of the bundle $\mathrm{Y}_{\infty} \longrightarrow$ Sol Ψ. However, the Frobenius theorem on Ψ_{∞} is not in general true since the solution of the system near the given point is not uniquely determined by values of all its partial derivatives at this point. Therefore in general the bundle $\Psi_{\infty} \longrightarrow S o l ~ Y ~ d o e s ~ n o t ~ e x i s t . ~ W h e n ~ w e ~ s a y ~ « v i r t u a l » ~ w e ~ m e a n ~ t h a t ~ w h e n ~ n e c e s s a r y ~$ we will discuss as if it existed. In particular the proposed geometric approach to determining the secondary operators is based on the following considerations. Let $\eta: M_{1} \longrightarrow M_{2}$ be a smooth bundle. Describe operators on M_{2} in terms of
some objects determined on M_{1}. If we apply the obtained description to the virtual bundle (2.1.1) we get a definition of secondary differential operators.

Denote by $F C(\eta)$ the linear space of operators from Diff $\left(C^{\infty}\left(M_{1}\right)\right)$ mapping the subspace of functions constant on any fibre of η into itself.

Let $F C^{\prime}(\eta)$ be a subspace of $F C(\eta)$ consisting of operators mapping the functions constant on any fibre of η to zero. Then the following obvious statement holds, its proof is omitted here.

PROPOSITION 2.1.1. $F C(\eta) / F C^{\prime}(\eta)=\operatorname{Diff}\left(C^{\infty}\left(M_{2}\right)\right)$.

The structure of spaces $F C(\eta)$ and $F C^{\prime}(\eta)$ is described by the following elementary statement subject to a direct verification in coordinates.

PROPOSITION 2.1.2. 1) $\triangle \in F C^{\prime}(\eta)$ if and only if \triangle can be represented in the form $\Delta=\sum_{i} \Delta_{i} \circ \nabla_{i}$, where ∇_{i} are vertical vector fields on M_{1} with respect to η and $\triangle_{i} \in \operatorname{Diff}\left(C^{\infty}\left(M_{1}\right)\right)$;
2) $\triangle \in F C(\eta)$ if and only if $F C^{\prime}(\eta) \circ \Delta \subset F C^{\prime}(\eta)$.

Now assume that we are given a foliation F on the manifold M or, which is the same, a completely integrable distribution on M. Then differential operators on the «manifold» of leaves of this foliation can be defined by using Propositions 2.1.1 and 2.1.2. Denote by $C_{F}^{\infty}(U)$ the set of all smooth functions on M constant on the intersection of any leaf of F with a domain $U \subset M$. Further, set

$$
\begin{gathered}
F C(F)=\left\{\Delta \in \operatorname { D i f f } \left(C^{\infty}(M)|\quad \Delta(f)| U \in C_{F}^{\infty}(U)\right.\right. \text { if } \\
\left.f \in C_{F}^{\infty}(U) \forall U \subset M\right\}, \\
F C^{\prime}(F)=\left\{\Delta \in \operatorname { D i f f } \left(C^{\infty}(M)|\Delta(f)| U=0 \quad\right.\right. \text { if } \\
\left.f \in C_{F}^{\infty}(U) \forall U \subset M\right\} .
\end{gathered}
$$

Obviously $F C(F)$ and $F C^{\prime}(F)$ are subspaces of the \mathbb{R}-linear space $\operatorname{Diff}\left(C^{\infty}(M)\right.$) and $F C^{\prime}(F) \subset F C(F)$. Now, taking Proposition 2.1.1 into account the set of all scalar differential operators Diff $C^{\infty}(\Gamma)$ on the «manifold» of all local leaves of F can be naturally defined by the «formula»

$$
\text { Diff } C^{\infty}(\Gamma)=F C(F) / F C^{\prime}(F)
$$

REMARK. We underline here, that we do not try make any sense of the symbol $C^{\infty}(\Gamma)$.

In this more general situation the following analogye of Propostion 2.1.2 holds.

PROPOSITION 2.1.2.' 1) $\triangle \in F C^{\prime}(F)$ if and only if \triangle can be represented in the form $\Delta=\Sigma_{i} \Delta_{i} \circ \square_{i}$, where \square_{i} are vector fields tangent to leaves of F and $\Delta_{i} \in$ $\in \operatorname{Diff}\left(C^{\infty}(M)\right.$);
2) $\triangle \in F C(F)$ if and only if $F C^{\prime}(F) \circ \triangle \subset F C^{\prime}(F)$.

Proof. Proposition 2.1.1 implies Proposition 2.1.2' because definition of spaces $F C(F)$ and $F C^{\prime}(F)$ have local character and locally each foliation is a bundle.
2.2. Intrinsic secondary operators. Now it is natural to set

$$
\begin{aligned}
& F C^{\prime}(C(\mathrm{Y}))=\operatorname{Diff}(F(\mathrm{Y})) \circ C D(\mathrm{Y}) \\
& F C(C(\mathrm{Y}))=\left\{\triangle \in \operatorname{Diff}(F(\mathrm{\varphi})) \mid F C^{\prime}(C(\mathrm{Y})) \circ \Delta \subset F C^{\prime}(C(\mathrm{Y}))\right\},
\end{aligned}
$$

following the lines of Proposition 2.1.2' and taking into account that the Cartan distribution on Ψ_{∞} determines a virtual bundle, more exactly the foliation $C(\mathrm{Y})$. Clearly, $F C^{\prime}(C(\Psi))$ and $F C(C(\Psi))$ are subspaces of the \mathbb{R}-linear space $\operatorname{Diff}(F(\Psi))$ and $F C^{\prime}(C(Ч)) \subset F C(C(\Psi))$. The following proposition is the direct corollary of definitions.

PROPOSITION 2.2.1. 1) $F C^{\prime}(C(ч))$ is a left ideal in the \mathbb{R}-algebra $\operatorname{Diff}(F(ч))$;
2) $F C(C(Ч))$ is a subalgebra in the \mathbb{R}-algebra $\operatorname{Diff}(F(\Psi))$;
3) $F C^{\prime}(C(\mathrm{\Psi}))$ is a two-sided ideal in $F C(C(\mathrm{Y}))$.

This proposition allows to define the quotient algebra

$$
\text { ДиФ }(F(\mathrm{\Psi}))=F C(C(ч)) / F C^{\prime}(C(\mathrm{\Psi})) .
$$

DEFINITION. Elements of Диф ($F(Ч)$) are called secondary (intrinsic) differential operators of the equation Ψ.

Further, set

$$
\begin{aligned}
& F C_{k}(C(\mathrm{\Psi}))=F C(C(\mathrm{\Psi})) \cap \operatorname{Diff}_{k}(F(\Psi)) \\
& F C_{k}^{\prime}(C(\Psi))=F C^{\prime}(C(\Psi)) \cap \operatorname{Diff}_{k}(F(\Psi)) .
\end{aligned}
$$

Clearly $F C_{k}(C(\mathrm{\Psi}))$ and $F C_{k}^{\prime}(C(\Psi))$ are subspaces of the \mathbb{R}-linear space $\operatorname{Diff}_{k}(F(\Psi))$ and $F C_{k}^{\prime}(C(\Psi)) \subset F C_{k}(C(\Psi))$. The quotient space

$$
\text { ДиФ }{ }_{k}(F(\mathrm{\Psi}))=F C_{k}(C(\mathrm{\Psi})) / F C_{k}^{\prime}(C(\mathrm{\varphi}))
$$

is naturally realized as a subspace in ДиФ $(F(\varphi))$. Its elements are called secondary (intrinsic) operators of order $\leqslant k$. Obviously there is a chain of inclusions

$$
\text { Диф }(F(Ч)) \subset \text { Диф }(F(Ч)) \subset \ldots \subset \text { Диф }(F(Ч)) \subset \ldots \subset \text { Диф }(F(Ч)) .
$$

If $\mathrm{\Psi}_{\infty}=N_{m}^{\infty}\left(J^{\infty} \mathrm{q}\right)$, then we will write $F C(C(N))(F C(C(\mathbb{I})))$, ДиФ $(F(N))$ (ДиФ ($F(\mathbb{T})$)) etc. instead of $F C(\mathcal{C}(ч))$, ДиФ ($F(\mathrm{\Psi})$) etc..

PROPOSITION 2.2.2. 1) ДиФ $(F(\Psi))=F C_{0}(\mathcal{C}(\Psi))=\{f \in F(Ч) \mid X(f)=0$ for any $X \in C D(F(Ч))\} ;$
2) $F C_{0}(C(N))=\mathbb{R}$;
3) Диф ${ }_{1}(F(Ч))=F C_{0}(C(\Psi)) \oplus \operatorname{Sym} Ч$.

Proof. 1) The obvious identity $F C_{0}^{\prime}(\mathcal{C}(ч))=0$ implies ДиФ $(F(\Psi))=F C_{0}(C(\Psi))$.
2) Let $f \in F C_{0}(\mathcal{C}(\mathrm{\Psi}))$, where $f \in F(\mathrm{\Psi})$. Then $X \circ f \in F C^{\prime}(C(\Psi))$, where $X \in$ $\in \mathcal{C} D(F(\mathrm{\Psi}))$. But $X \circ f=f \circ X+X(f)$. Since $f \circ X \in F C^{\prime}(C(Ч))$, then $X(f) \in$ $\in F C^{\prime}(C(\mathrm{Y}))$ and therefore $X(f)=0$. If $\mathrm{Y}_{\infty}=N_{m}^{\infty}$ it means that $f=$ const.
3) We observe, that $F C_{1}^{\prime}(\mathcal{C}(Ч))=C D(F(\Psi))$. On the other hand the inclusion $F C^{\prime}(\mathcal{C}(Ч)) \circ \triangle \subset F C^{\prime}(\mathcal{C}(Ч))$ is equivalent to the inclusion $\left[F C^{\prime}(\mathcal{C}(\cup)), \Delta\right] \subset$ $\subset F C^{\prime}(\mathcal{C}(\Psi))$ because we always have $\triangle \circ F C^{\prime}(C(\Psi)) \subset F C^{\prime}(C(\Psi))$. This implies

$$
\left[C D(F(\mathrm{Y}), \Delta] \subset F C_{1}^{\prime}(C(\mathrm{Y}))=C D(F(\mathrm{Y}))\right.
$$

if $\triangle \in F C_{1}(C(\Psi))$. Further, the operator Δ is uniquely represented in the form $\Delta=\Delta(1)+(\Delta-\Delta(1))$. Then for any $X \in \mathcal{C} D(F(\mathrm{Y}))$:

$$
\begin{aligned}
{[X, \Delta] } & =[X, \Delta(1)]+[X, \Delta-\Delta(1)]=X(\Delta(1))+ \\
& +[X, \Delta-\Delta(1)] \in C D(F(\mathrm{Y}))
\end{aligned}
$$

Hence

$$
\begin{aligned}
& X(\Delta(1))=0 \quad \text { and } \quad[X, \Delta-\Delta(1)] \in C D(F(\mathrm{Y})) \\
& \text { for any } \quad X \in C D(F(\Psi))
\end{aligned}
$$

But this means that $\triangle(1) \in F C_{0}(C(\Psi)), \Delta-\Delta(1) \in D_{C}(F(\Psi))$.
2.3. The structure of secondary opeators. When $\Psi \subset J^{k} \mathbb{q}$, hence $\Psi_{\infty} \subset J^{\infty} \mathbb{q}$, we can give a more constructive description of the algebra ДиФ (F(ч)). For this denote by $\ni_{k}(Ч), 1 \leqslant k<\infty$ the set of all operators $\Delta \in \operatorname{Diff}_{k}(F(\Psi))$ satisfying the conditions

1) $\Delta(1)=0$;
2) Δ is a vertical operator
3) $\left[\triangle, \hat{X} \mid Ч_{\infty}\right]=0$ for any $X \in D(M)$.

If $\Psi_{\infty}=J^{\infty} \mathbb{I}$, then we write $Э_{k}(\mathbb{G})$ instead of $\ni_{k}(\Psi)$. Clearly $\ni_{k}(\Psi)$ is an \mathbb{R} --linear space.

THEOREM 2.3.1. 1) $\exists_{k}(Ч) \subset F C_{k}(C(\Psi))$;
2) $F C_{k}(C(Ч))=F C_{k}^{\prime}(C(Ч)) \oplus F C_{0}(C(Ч)) \oplus Э_{k}(Ч)$.

Proof. 1) Since operators of the form $\hat{X} \mid \Psi_{\infty}$ generate $C D(F(Ч))$, see n. 1.4, then the space $F C^{\prime}(C(\Psi))$ is additively generated by operators of the form $\nabla \circ \hat{X} \mid \Psi_{\infty}$, where $\nabla \in \operatorname{Diff}(F(\Psi))$. If $\Delta \in Э_{k}(Ч)$, then $\nabla \circ \hat{X} \mid \Psi_{\infty} \circ \Delta=\nabla \circ \Delta \circ$ $\circ \hat{X} \mid \Psi_{\infty} \in F C^{\prime}(C(Ч))$. Hence $F C^{\prime}(C(Ч)) \circ \Delta \subset F C^{\prime}(C(\Psi))$ and therefore $\Delta \in$ $\in F C_{k}(\mathcal{C}(\mathrm{Y}))$.
2) Corollary 2 and Lemma 1.5 .1 obviously implies $F C^{\prime}(C(\mathrm{Y})) \cap Э_{k}(\mathrm{Y})=0$. Represent $\triangle \in F C(C(\Psi))$ in the form $\triangle=\triangle(1)+(\Delta-\triangle(1))$. As in the proof of Proposition 2.2 .2 one can show that $\triangle(1) \in F C_{0}(C(Y))$. Let $\Delta^{\prime}=\triangle-\triangle(1)$. According to Corollary 1 of Lemma 1.5.1 $\triangle^{\prime} \in F C(C(\Psi))$ is presentable in the form $\Delta^{\prime}=\square+\sum_{i} \square_{i} \circ \nabla_{i}$, where operators \square, \square_{i} are vertical and $\nabla_{i} \in$ $\in C \operatorname{Diff}(F(\mathrm{Y}))$. Since $\quad \sum_{i} \square_{i} \circ \nabla_{i} \in F C(C(\mathrm{Y}))$, then $\quad \square=\Delta^{\prime}-\sum_{i} \square_{i} \circ \nabla_{i} \in$ $\in F C\left(C(\mathrm{Y})\right.$), hence $\left[\hat{X} \mid \Psi_{\infty}, \square\right] \in F C^{\prime}(C(\mathrm{Y}))$ for any $X \in D(M)$. But for each function $\quad f \in C^{\infty}(M):\left[\left[\hat{X} \mid \Psi_{\infty}, \square\right], f\right]=\left[\left[\hat{X} \mid \Psi_{\infty}, f\right], \square\right]+\left[[f, \square], \hat{X} \mid \Psi_{\infty}\right]=$ $=\left[\left[\hat{X} \mid \Psi_{\infty}, f\right], \square\right]=[X(f), \square]=0$. Thus, $\left[\hat{X} \mid \Psi_{\infty}, \square\right]$ belongs to $F C^{\prime}(C(\Psi))$ and is vertical. Therefore, $\left[\hat{X} \mid \mathrm{\varphi}_{\infty}, \square\right]=0$ for all $X \in D(M)$ by Corollary 2 of Lemma 1.5.1, and $\square \in Э_{k}(Ч)$.

COROLLARY. If $\Psi \subset J^{r}(\mathbb{T})$, then

$$
\text { Диф }_{k}(F(\mathrm{Y}))=F C_{0}(\mathcal{C}(Ч)) \oplus \ni_{k}(Ч) .
$$

REMARK. Due to the corollary the operators from $F C_{0}(C(\Psi)) \oplus Э_{k}(\mathrm{Y})$ will be called intrinsic secondary operators of the equation Y.

In conclusion of the $n .2 .3$ we obtain relations for the coefficients of the vertical operator $\Delta \in \operatorname{Diff}(F(\Psi)), \Delta(1)=0$, which are equivalent to the condition 3) of definition of $\ni_{k}(Ч)$.

Let a coordinate chart W with the canonical coordinates q_{j}, p_{σ}^{i} in N_{m}^{∞} be such that coordinates q_{j} and some of coordinates p_{σ}^{i} form a coordinate system on $W \cap \mathrm{Y}_{\infty}$, as in n. 1.5. Then the restriction \bar{p}_{σ}^{i} of each coordinate function p_{σ}^{i} onto $W \cap \Psi_{\infty}$ is a function in $\bar{q}_{j}, \bar{p}_{\vec{\sigma}}^{i}$.

Since the operator \triangle is vertical, it is presentable in the form

$$
\Delta=\sum_{s=1}^{k} \sum_{\substack{i_{1}, \ldots, i_{s} \\ \bar{\sigma}_{1}, \ldots, \bar{\sigma}_{s}}} a_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{s}}^{i_{1} \ldots i_{s}} \frac{\partial^{s}}{\partial \bar{p}_{\bar{\sigma}_{1}}^{i_{1}} \ldots \partial \bar{p}_{\bar{\sigma}_{s}}^{i_{s}}}
$$

in coordinates $\bar{q}_{j}, \bar{p}_{\bar{\sigma}}^{i}$ (see 1.5). Without loss of generality assume that coefficients
$a_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{s}}^{i_{1} \ldots i_{s}}$ are symmetric, i.e. $a_{\bar{\sigma}_{g(1)} \cdots \cdots \sigma_{g(s)}}^{i_{g}(1) \cdots i_{g}(s)}=a_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{s}}^{i_{1} \ldots i_{s}}$ for any permutation g of s elements.
The condition $\left[\Delta, \hat{X} \mid \Psi_{\infty}\right]=0$ for any $X \in D(M)$ is equivalent to the condition $\left[\bar{D}_{j}, \Delta\right]=0$ for any $j=1,2, \ldots, n$ in coordinates $\bar{q}_{j}, \bar{p}_{\bar{\alpha}}^{i}$. Indeed, since in coordinates q_{j} a vector field $X \in D(M)$ is presentable in the form $X=\sum_{i=1}^{n} f \cdot \frac{\partial}{\partial q_{i}}$, where $f_{i} \in C^{\infty}(M)$, then $\hat{X}=\sum_{i=1}^{n} f_{i} \cdot D_{i}$ and $\hat{X} \mid \mathrm{Y}_{\infty}=\sum_{i=1}^{n} f_{i} \cdot \bar{D}_{i}$. Hence $\left[\hat{X} \mid \mathrm{Y}_{\infty}, \Delta\right]=$ $=\sum_{i=1}^{n}\left[f_{i}, \Delta\right] \bar{D}_{i}+\sum_{i=1}^{n} f_{i}\left[\bar{D}_{i}, \Delta\right]=\sum_{i=1}^{n} f_{i}\left[\bar{D}_{i}, \Delta\right]$.

Rewrite the conditions $\left[\bar{D}_{j}, \Delta\right]=0$ for any $j=1,2, \ldots, n$ it terms of coefficients $a_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{s}}^{i_{1} i_{s}}$ of operator \triangle :

$$
\begin{aligned}
{\left[\bar{D}_{j}, \Delta\right] } & =\left[\bar{D}_{j}, \sum_{s=1}^{k} a_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{s}}^{i_{1} \ldots i_{s}} \frac{\partial^{s}}{\partial \bar{p}_{\bar{\sigma}_{1}}^{i_{1}} \ldots \partial \bar{p}_{\bar{\sigma}_{s}}^{i_{s}}}\right]= \\
& =\sum_{s=1}^{k} \bar{D}_{j}\left(a_{\left.\bar{\sigma}_{1} \ldots \frac{\bar{\sigma}_{s}}{i_{1} \ldots i_{s}}\right)}\right) \frac{\partial^{s}}{\partial \bar{p}_{\bar{\sigma}_{1}}^{i_{1}} \ldots \partial \bar{p}_{\bar{\sigma}_{s}}^{i_{s}}}+ \\
& +\sum_{s=1}^{k} a_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{s}}^{i_{1} \ldots i_{s}} \cdot\left[\bar{D}_{j}, \frac{\partial^{s}}{\partial \bar{p}_{\bar{\sigma}_{1}}^{i_{1}} \ldots \partial \bar{p}_{\bar{\sigma}_{s}}^{i_{s}}}\right]
\end{aligned}
$$

Since

$$
\begin{aligned}
& {\left[\bar{D}_{j}, \frac{\partial^{s}}{\partial \bar{p}_{\bar{\sigma}_{1}}^{i_{1}} \ldots \partial \bar{p}_{\bar{\sigma}_{s}}^{i_{s}}}\right]=} \\
& =-\sum_{l=1}^{s} \sum_{1 \leqslant r_{1}<\ldots<r_{l} \leqslant s} \frac{\partial^{l} \bar{p}_{\bar{\tau}+1}^{t}}{\partial \bar{p}_{\bar{\sigma}_{r_{1}}}^{i_{1}} \ldots \partial \bar{p}_{\bar{\sigma}_{r_{l}}}^{i_{r_{l}}}} . \\
& \partial^{s-l+1}
\end{aligned}
$$

then

$$
\begin{aligned}
& \sum_{\substack{i_{1}, \ldots, i_{s} \\
\sigma_{1}, \ldots, \sigma_{s}}} a_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{s}}^{i_{1} \ldots i_{s}}\left[\bar{D}_{j}, \frac{\partial^{s}}{\partial \bar{p}_{\bar{\sigma}_{1}}^{i_{1}} \ldots \partial \bar{p}_{\bar{\sigma}_{s}}^{i_{s}}}\right]= \\
& \quad=-\sum_{l=1}^{s} C_{s}^{l} \frac{\partial^{l} \bar{p}_{\bar{\tau}+1}^{t}}{\partial \bar{p}_{\bar{\nu}_{1}}^{j_{1}} \ldots \partial \bar{p}_{\bar{\nu}_{l}}^{j_{l}}} \cdot a_{\overline{\bar{\nu}}_{1} \ldots \bar{v}_{l}}^{j_{1} \ldots j_{l} i_{1} \ldots i_{s-l}} \frac{\partial^{s-l+1}}{\bar{\sigma}_{s-l}} \frac{\bar{\sigma}_{s}}{\partial \bar{p}_{\bar{\sigma}_{1}}^{i_{1}} \ldots \partial \bar{p}_{\bar{\sigma}_{s-l}}^{i_{s-l}} \partial \bar{p}_{\bar{\tau}}^{t}}
\end{aligned}
$$

$$
\begin{aligned}
& =-\sum_{l=1}^{s} C_{s}^{l} \frac{1}{s-l+1} \sum_{r=1}^{s-l+1} \frac{\partial^{l} \bar{p}_{\bar{\sigma}_{r}+1_{j}}^{i_{r}}}{\partial \bar{p}_{\bar{\nu}_{1}}^{j_{1}} \ldots \partial \bar{p}_{\bar{v}_{l}}^{j_{l}}} .
\end{aligned}
$$

$$
\begin{aligned}
& =-\sum_{t=1}^{s} C_{s}^{s-t+1} \sum_{r=1}^{t} \frac{\partial^{s-t+1} \bar{p}_{\bar{\sigma}_{r}+1_{j}}^{i}}{\partial \bar{p}_{\bar{\nu}_{1}}^{j_{1}} \ldots \partial \bar{p}_{\bar{\nu}_{s-t+1}}^{j_{s-t+1}}} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& {\left[\bar{D}_{j}, \Delta\right]=} \\
& =\sum_{t=1}^{k}\left(\bar{D}_{j}\left(a_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{t}}^{i_{1} \ldots i_{t}}\right)-\sum_{r=1}^{t} \frac{1}{t} \sum_{s=t}^{k} C_{s}^{s-t+1} \frac{\partial^{s-t+1} \bar{p}_{\bar{\sigma}_{r}+1}^{i_{r}}}{\partial \bar{p}_{\bar{\nu}_{1}}^{j_{1}} \ldots \partial \bar{p}_{\overline{\bar{L}}_{s-t+1}}^{j_{s-t+1}}} .\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{t=1}^{k}\left(\bar{D}_{j}\left(a_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{t}}^{i_{1} \ldots i_{t}}\right)-\sum_{r=1}^{t} \frac{1}{t} \sum_{l=1}^{k-t+1} C_{l+t-1}^{l} \frac{\partial^{l} \bar{p}_{\bar{\sigma}_{r}+1}^{i_{j}}}{\partial \bar{p}_{\bar{\nu}_{1}}^{j_{1}} \ldots \partial \bar{p}_{\bar{\nu}_{l}}^{i_{l}}} .\right. \\
& \left.\cdot a_{\bar{v}_{1} \ldots \bar{\nu}_{l}}^{j_{1} \ldots i_{1} i_{1} \ldots \hat{\sigma}_{r} \ldots \bar{\sigma}_{r} \ldots \bar{\sigma}_{t}}\right) \frac{\partial^{t}}{\partial \bar{p}_{\bar{\sigma}_{1}}^{i_{1}} \ldots \partial \bar{p}_{\bar{\sigma}_{t}}^{i_{t}}} .
\end{aligned}
$$

Note that the coefficients of $\frac{\partial^{t}}{\partial \bar{p}_{\bar{\sigma}_{1}}^{i_{1}} \ldots \partial \bar{p}_{\bar{\sigma}_{t}}^{i_{t}}}$ in the last expression are symmetric. Therefore the condition

$$
\left[\Delta, \hat{X} \mid \mathrm{Y}_{\infty}\right]=0 \quad \text { for any } \quad X \in D(M)
$$

in terms of the coefficients is equivalent to

$$
\begin{align*}
& \bar{D}_{j}\left(a_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{t}}^{i_{1} \ldots i_{t}}\right)= \\
& \quad=\sum_{r=1}^{t} \frac{1}{t} \sum_{l=1}^{k-\frac{t}{t}+1} C_{l+t-1}^{l} \frac{\partial^{l} \bar{p}_{\bar{\sigma}_{r}}^{i_{r}}+1_{j}}{\partial \bar{p}_{\bar{v}_{1}}^{j_{1}} \ldots \partial \bar{p}_{\bar{v}_{l}}^{j_{l}}} \cdot a_{\bar{\nu}_{1} \ldots \bar{\nu}_{l}}^{j_{1} \ldots j_{1} i_{1} \ldots \hat{\sigma}_{1} \ldots i_{t}, \ldots \bar{\sigma}_{t}} \tag{2.3.1}
\end{align*}
$$

for $t=1,2, \ldots, k ; j=1,2, \ldots, n$ and any $\bar{\sigma}_{1}, \ldots, \bar{\sigma}_{t}, \bar{\nu}_{1}, \ldots, \bar{\nu}_{l}$.
2.4. Generating operators. Now, describe the operators from $\ni_{k}(\mathbb{I})$ in canonical local coordinates q_{j}, p_{a}^{i}.

Set $\mathscr{L}_{j}(\nabla)=\left[D_{j}, \nabla\right]$, where $\nabla \in \operatorname{Diff}(F(\mathbb{T})), \quad \mathscr{L}_{\sigma}=\mathscr{L}_{1}^{i_{1}} \circ \ldots \circ \mathscr{L}_{n}^{i_{n}}, \quad \sigma=$ $=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$.

THEOREM 2.4.1. 1) An operator of the form

$$
\begin{equation*}
\Delta=\sum_{i=1}^{m} \sum_{\sigma} \mathscr{L}_{\sigma}\left(\nabla_{i}\right) \frac{\partial}{\partial p_{\sigma}^{i}}, \tag{2.4.1}
\end{equation*}
$$

where ∇_{i} are vertical operators from $\operatorname{Diff}(F(\mathbb{\Phi}))$ for $i=1,2, \ldots, m$, is an operator from $\ni_{k}(\mathbb{9})$;
2) Each operator $\Delta \in Э_{k}(\uparrow)$ is presentable in canonical coordinates q_{j}, p_{σ}^{i} in the form (2.4.1).

Proof. To prove this we need the identity

$$
\left[D_{j}, \sum_{\substack{i_{1}, \ldots, i_{r} \\ \sigma_{1}, \ldots, \sigma_{r}}} a_{\sigma_{1} \ldots \sigma_{r}}^{i_{1} \ldots i_{r}} \frac{\partial^{r}}{\partial p_{\sigma_{1}}^{i_{1}} \ldots \partial p_{\sigma_{r}}^{i_{r}}}\right]=
$$

$$
\begin{equation*}
=\sum_{\substack{i_{1}, \ldots, i_{r} \\ \sigma_{1} \ldots, \sigma_{r}}}\left(D_{j}\left(a_{\sigma_{1} \ldots \sigma_{r}}^{i_{1} \ldots i_{r}}\right)-\sum_{s=1}^{r} a_{\sigma_{1} \ldots \sigma_{s}+1_{j} \ldots \sigma_{r}}^{i_{1} \ldots i_{s} \ldots i_{r}}\right) \frac{\partial^{r}}{\partial p_{\sigma_{1}}^{i_{1}} \ldots \partial p_{\sigma_{r}}^{i_{r}}}, \tag{2.4.2}
\end{equation*}
$$

which immediately follows from

$$
\begin{equation*}
\left[D_{j}, \frac{\partial^{r}}{\partial p_{\sigma_{1}}^{i_{1}} \ldots \partial p_{\sigma_{r}}^{i_{r}}}\right]=-\sum_{s=1}^{r} \frac{\partial^{r}}{\partial p_{\sigma_{1}}^{i_{1}} \ldots \partial p_{\sigma_{s}-1_{j}}^{i_{s}} \ldots \partial p_{\sigma_{r}}^{i_{r}}} \tag{2.4.3}
\end{equation*}
$$

which in its turn follows from the obvious identity

$$
\left[D_{j}, \frac{\partial}{\partial p_{\sigma}^{i}}\right]=-\frac{\partial}{\partial p_{\sigma-1_{j}}^{i}}= \begin{cases}\frac{\partial}{\partial p_{\left(l_{1}, \ldots, l_{j}-1, \ldots, l_{n}\right)}^{i}}, & \text { if } l_{j} \geqslant 1 \\ 0, & \text { if } l_{j}=0\end{cases}
$$

1) In the proof of Theorem 2.3 .1 it was shown, that if ∇ is a vertical operator, then so is $[\nabla, \hat{X}]$ for every $X \in D(M)$. Therefore $\mathscr{L}_{j}(\nabla)$ is a vertical. Since $\frac{\partial}{\partial p_{\sigma}^{i}}$ is vertical, also then so is $\sum_{i, \sigma} \mathscr{L}_{\sigma}\left(\nabla_{i}\right) \frac{\partial}{\partial p_{\sigma}^{i}}$.
It was shown in $n .2 .3$ that the condition $[\Delta, \hat{X}]=0$ for any $X \in D(M)$ is
equivalent to the condition $\left[\triangle, D_{i}\right]=0$ for $i=1,2, \ldots, n$. Further,

$$
\begin{aligned}
{\left[\Delta, D_{j}\right] } & =\left[\sum_{i, \sigma} \mathscr{L}_{\sigma}\left(\nabla_{i}\right) \frac{\partial}{\partial p_{\sigma}^{i}}, D_{j}\right]= \\
& =\sum_{i, \sigma}\left(\left[\mathscr{L}_{\sigma}\left(\nabla_{i}\right), D_{j}\right] \circ \frac{\partial}{\partial p_{\sigma}^{i}}+\mathscr{L}_{\sigma}\left(\nabla_{i}\right) \circ\left[\frac{\partial}{\partial p_{\sigma}^{i}}, D_{j}\right]\right)= \\
& =\sum_{i, \sigma}\left(-\mathscr{L}_{\sigma+1_{j}}\left(\nabla_{i}\right) \circ \frac{\partial}{\partial p_{\sigma}^{i}}+\mathscr{L}_{\sigma}\left(\nabla_{i}\right) \circ \frac{\partial}{\partial p_{\sigma-1}^{i}}\right)= \\
& =\sum_{i, \sigma}\left(-\mathscr{L}_{\sigma+1_{j}}\left(\nabla_{i}\right) \frac{\partial}{\partial p_{\sigma}^{i}}+\mathscr{L}_{\sigma+1_{j}}\left(\nabla_{i}\right) \frac{\partial}{\partial p_{\sigma}^{i}}\right)=0 .
\end{aligned}
$$

2) Let

$$
\Delta=\sum_{s=1}^{k} \sum_{\substack{i_{1} \ldots, i_{s} \\ \sigma_{1} \ldots, \sigma_{s}}} a_{\sigma_{1} \ldots \sigma_{s}}^{i_{1} \ldots i_{s}} \frac{\partial^{s}}{\partial p_{\sigma_{1}}^{i_{1}} \ldots \partial p_{\sigma_{s}}^{i_{s}}}
$$

be a secondary operator of order $\leqslant k$. Without loss of generality one can assume that its coefficients $a_{\sigma_{1} \ldots \sigma_{s}}^{i_{1} \ldots i_{s}}$ are symmetric. Rewrite Δ in the following form

$$
\Delta=\sum_{i, \sigma}\left(\sum_{s=1}^{k} \sum_{\substack{i_{1}, \ldots, i_{s}-1 \\ \sigma_{1}, \ldots, \sigma_{s-1}}} a_{\sigma_{1} \ldots \sigma_{s-1} \sigma}^{i_{1} \ldots i_{s-1} i} \frac{\partial^{s-1}}{\partial p_{\sigma_{1}}^{i_{1}} \ldots \partial p_{\sigma_{s-1}}^{i_{s-1}}}\right) \frac{\partial}{\partial p_{\sigma}^{i}}=\sum_{i, \sigma} \Delta_{i, \sigma} \frac{\partial}{\partial p_{\sigma}^{i}}
$$

The symmetry of coefficients of Δ and (2.4.1) imply that the condition $\left[D_{j}, \Delta\right]=$ $=0$ for any $j=1,2, \ldots, n$ on Δ is equivalent to the fact that coefficients of Δ satisfy

$$
\begin{equation*}
\mathscr{D}_{j}\left(a_{\sigma_{1} \ldots \sigma_{s}}^{i_{1} \ldots i_{s}}\right)-\sum_{r=1}^{s} a_{o_{1} \ldots a_{r}+1_{j} \ldots \sigma_{s}}^{i_{1} \ldots i_{1} \ldots i_{s}}=0 \tag{2.4.4}
\end{equation*}
$$

for $s=1,2, \ldots, k ; j=1,2, \ldots, n ; i_{1}, \ldots, i_{s}=1,2, \ldots, m$, and any $\sigma_{1}, \ldots, \sigma_{s}$.
Rewrite this equation in the following form

$$
\begin{equation*}
a_{\sigma_{1} \ldots \sigma_{s-1} \sigma_{s}+1_{j}}^{i_{1} \ldots i_{s-1} i_{s}}=D_{j}\left(a_{\sigma_{1} \ldots \sigma_{s}}^{i_{1} \ldots i_{s}}\right)-\sum_{r=1}^{s-1} a_{\sigma_{1} \ldots \sigma_{r}+1_{j} \ldots \sigma_{s}}^{i_{1} \ldots i_{1} \ldots i_{s}} \tag{2.4.5}
\end{equation*}
$$

for $s=1,2, \ldots, k ; j=1,2, \ldots, n ; i_{1}, \ldots, i_{s}=1,2, \ldots, m$, and any $\sigma_{1}, \ldots, \sigma_{s}$.

Then (2.4.1) implies $\Delta_{i, \sigma+1_{j}}=\left[D_{j}, \Delta_{i, \sigma}\right]$ for $i=1,2, \ldots, m, j=1,2, \ldots, n$. Hence

$$
\Delta=\sum_{i, \sigma} \mathscr{L}_{\sigma}\left(\Delta_{i, 0}\right) \frac{\partial}{\partial p_{\sigma}^{i}}
$$

DEFINITION. A secondary operator

$$
\sum_{i, \sigma} \mathscr{L}_{\sigma}\left(\nabla_{i}\right) \frac{\partial}{\partial p_{\sigma}^{i}}
$$

is denoted by \exists_{∇} and the set $\nabla=\left(\nabla_{1}, \ldots, \nabla_{m}\right)$ is called the generating operator for \exists_{∇}.

REMARK 1. If $\nabla_{i}=\mathscr{S}_{i} \in F(\mathbb{1})$, then

$$
\mathscr{L}_{\sigma}\left(\mathscr{S}_{i}\right)=D_{\sigma}\left(\mathscr{S}_{i}\right)=D_{1}^{i_{1}}\left(\ldots\left(D_{n}^{i_{n}}\left(\mathscr{S}_{i}\right) \ldots\right), \quad i=1,2, \ldots, m\right.
$$

and $\ni_{\nabla}=\sum_{i, \sigma} D_{\sigma}\left(\mathscr{S}_{i}\right) \frac{\partial}{\partial p_{\sigma}^{i}}$ is nothing but the standard expression of evolution differentiation $\exists_{\mathscr{\mathscr { L }}}$ in coordinates q_{j}, p_{σ}^{i} (see [5]), where $\mathscr{S}=\left(\mathscr{S}_{1}, \ldots, \mathscr{S}_{m}\right)=\nabla$.

REMARK 2. Generating operator for a secondary operator is not uniquely determined. For instance, let $\mathbb{\|}=\mathbb{1}_{\mathbb{R}}$ be the trivial one-dimensional bundle over $\mathbb{R}, \nabla=\frac{\partial}{\partial p_{1}}$. Then $\exists_{\nabla}=0=Э_{0}$.

REMARK 3. In the coordinates any secondary operator is defined by a set of its coefficients. Clearly, these coefficients are not uniquely determined if the operator is of order $\geqslant 2$. Only symmetric coefficients are uniquely determined. Coefficients $a_{\sigma_{1} \ldots \sigma_{s}}^{i_{1} \ldots i_{s}}$ of the secondary operator \exists_{∇} can be uniquely recovered from $a_{o_{1} \ldots \sigma_{s-1}}^{i_{1} \ldots i_{s-1} i}$ of the generating operator $\nabla=\left(\nabla_{1}, \ldots, \nabla_{m}\right)$, where

$$
\nabla_{i}=\sum_{s=0}^{k-1} \sum_{\substack{i_{1}, \ldots, i_{s-1} \\ \sigma_{1}, \ldots, \sigma_{s-1}}} a_{\sigma_{1} \ldots \sigma_{s-1}}^{i_{1} \ldots i_{s-1} i} \frac{\partial}{\partial p_{\sigma_{1}}^{i_{1}} \ldots \partial p_{\sigma_{s-1}}^{i_{s-1}}}
$$

by recursion (2.4.5) setting $a_{\sigma_{1} \ldots \sigma_{s-1} \sigma}^{i_{1} \ldots i_{s-1} i}=a_{\sigma_{1} \ldots \sigma_{s-1}}^{i_{1} \ldots i_{s-1} i}$. It what follows we will always assume that coefficients of operators \ni_{∇} are obtained this way.
2.5. Extrinsic secondary operators. In the theory of infinitesimal symmetries of differential equations the following fact is known: each intrinsic infinitesimal
symmetry of an equation Y may be extended to an extrinsic symmetry (see [3]). Since intrinsic infinitesimal symmetries are intrinsic secondary operators of an equation (see n. 2.2), it is natural to assume that each intrinsic secondary operator is extendable to a secondary operator on $N_{m}^{\infty}\left(J^{\infty} \mathrm{f}\right)$.
Here an elucidation is required. By definition each intrinsic secondary operator \triangle of an equation is the coset $\Delta=\bar{\square}+F C^{\prime}(C(\Psi)), \bar{\square} \in F C(C(\Psi))$. Since each operator $\bar{\nabla} \in F C^{\prime}(C(\mathrm{Y}))$ is presentable in the form $\bar{\nabla}=\sum_{i} \bar{\nabla}_{i} \circ\left(X_{i} \mid \mathrm{Y}_{\infty}\right)$, where $X_{i} \in \mathcal{C} \operatorname{Diff}(F(N)), \bar{\nabla}_{i} \in \operatorname{Diff}(F(\mathrm{Y}))$, it is extendable to the operator $\nabla=\sum_{i} \nabla_{i}$ 。 - $X_{i} \in F C^{\prime}(C(N))$, where ∇_{i} is an extension of $\bar{\nabla}_{i}$. That is why we will take as the extension of $\Delta \in$ ДиФ ($F(\mathrm{\varphi})$) the class $\square+F C^{\prime}(C(N)$), where \square is the extension of a representative of the class Δ from Ψ_{∞} to N_{m}^{∞}. This definition implies that the above assumption on extendability of intrinsic secondary operators is equivalent to the assumption on extendability of any operator from $F C(C(\Psi))$ to an operator from $F C(C(N)$). However, the following example shows that this assumption fails in such a generality.

Example. Let $\mathbb{G}=\mathbb{1}_{\mathbb{R}}$, i.e. the trivial one-dimensional bundle over \mathbb{R} and q, p, $p_{1}, \ldots, p_{k}, \ldots$ canonical coordinates on $J^{\infty} \mathbb{1}_{\mathbb{R}}$. Consider an elementary differential equation $\Psi=\left\{p_{1}=0\right\} \subset J^{1} \mathbb{1}_{\mathbb{R}}$. Clearly $\Psi_{\infty}=\left\{p_{k}=0\right.$ for any $\left.k=1,2, \ldots\right\}$. Hence Ψ_{∞} is a two-dimensional coordinate plane with coordinates q, p in $J^{\infty} \mathbb{1}_{\mathbb{R}}$. Clearly, the operator $a+b \frac{\partial}{\partial p}$, where functions a and b depend only on p, commutes with $\left.\bar{D}=\frac{\hat{\partial}}{\partial q} \right\rvert\, \Psi_{\infty}=\frac{\partial}{\partial q}$. Hence (see n. 2.2), $a+b \frac{\partial}{\partial p} \in F C(\mathcal{C}(\Psi)$). On the other hand, $\Delta(1)=$ const for each $\Delta \in F C(C(N))$ (see n. 2.2). Therefore the operator $a+b \frac{\partial}{\partial p}$ is not extandable on $J^{\infty} \mathbb{I}_{\mathbb{R}}$ if $a \neq$ const.

DEFINITION. A secondary operator $\triangle \in Д и Ф(F(N))$ is an extrinsic secondary operator of an equation Ψ, if the coset of Δ contains a representative, which admits a restriction onto Ψ_{∞}. If Δ is an extrinsic secondary operator of Ψ, set $\Delta\left|\Psi_{\infty}=\square\right| \Psi_{\infty}+F C^{\prime}(C(\Psi))$, where \square is a representative of the class Δ, admitting a restriction onto Ψ_{∞}.

Now we are going to prove, that intrinsic secondary operators with constant free terms are extendable to extrinsic secondary operators.

To prove it we will need the following technical result.
Let W be a chart with the canonical coordinates q_{j}, p_{σ}^{i}, as in $n .1 .5$, so that coordinates $\bar{q}_{j}, \bar{p}_{\bar{\sigma}}^{i}$ constitute a coordinate system on $W \cap \Psi_{\infty}$ and the prolongation Ψ_{∞} is defined by equations

$$
p_{\underline{g}}^{i}-f_{\underline{g}}^{i}\left(q_{j}, p_{\bar{\sigma}}^{i}\right)=0
$$

Then in W the ideal $I\left(\mathrm{\Psi}_{\infty}\right)$ is generated by the functions

$$
\Phi_{\underline{g}}^{i}=p_{\underline{g}}^{i}-f_{\underline{q}}^{i}\left(q_{j}, p_{\bar{\sigma}}^{i}\right) .
$$

Set

$$
f_{\bar{\sigma}}^{i}\left(q_{j}, p_{\bar{\sigma}}^{i}\right) \equiv p_{\bar{\sigma}}^{i} \quad \text { and } \quad \Phi_{\bar{\sigma}}^{i}=p_{\bar{\sigma}}^{i}-f_{\bar{\sigma}}^{i}\left(q_{j}, p_{\bar{\sigma}}^{i}\right) \equiv 0
$$

Then we may assume that in W the ideal $I\left(\mathrm{Y}_{\infty}\right)$ is generated by all the functions

$$
\Phi_{\sigma}^{i}=p_{\sigma}^{i}-f_{\sigma}^{i}\left(q_{j}, p_{\bar{\sigma}}^{i}\right)
$$

Consider the operator

$$
\square=\sum_{s=0}^{k} \sum_{\substack{i_{1}, \ldots, i_{s} \\ \sigma_{1} \ldots, s_{s}}} A_{\sigma_{1} \ldots \sigma_{s}}^{i_{1} \ldots i_{s}} \frac{\partial^{s}}{\partial p_{\sigma_{1}}^{i_{1}} \ldots \partial p_{\sigma_{s}}^{i_{s}}}
$$

Without loss of generality assume that its coefficients are symmetric. For simplicity denote by σ multiindices $\binom{i}{\sigma}$ of coordinate functions, operator coefficients, etc. . In these notations \square is of the form

$$
\square=\sum_{s=0}^{k} \sum_{\sigma_{1} \ldots \sigma_{s}} A_{\sigma_{1} \ldots \sigma_{s}} \frac{\partial^{s}}{\partial p_{\sigma_{1}} \ldots \partial p_{\sigma_{s}}}
$$

LEMMA 2.5.1. The operator \square is restrictable onto Ψ_{∞} if and only if its coefficients satisfy

$$
\begin{equation*}
A_{\sigma_{1} \ldots \sigma_{r-1} \sigma_{r}}\left|\Psi_{\infty}=\frac{1}{r} \sum_{l=1}^{k-r+1} C_{l+r-1}^{l} \frac{\partial^{l} p_{\sigma_{r}}}{\partial p_{\bar{\nu}_{1}} \ldots \delta p_{\bar{v}_{l}}} \cdot A_{\bar{v}_{1} \cdots \bar{\nu}_{l} o_{1} \ldots \sigma_{r-1}}\right| \Psi_{\infty} \tag{2.5.1}
\end{equation*}
$$

for $r=1,2, \ldots, k$; and any $\sigma_{1}, \ldots, \sigma_{r}$.
Proof. Recall that the restrictibility of \square onto U_{∞} means that $\square\left(I\left(\mathrm{U}_{\infty}\right)\right) \subset I\left(\mathrm{U}_{\infty}\right)$ and the latter is equivalent to condition $\square(\mathscr{S}) \mid \mathrm{Y}_{\infty}=0$ for any $\mathscr{S} \in I\left(\mathrm{Y}_{\infty}\right)$. Let $\mathscr{S} \in I\left(\mathrm{Y}_{\infty}\right)$. Then on W the function \mathscr{S} is presentable by the sum $\mathscr{S}=\sum_{\sigma} \lambda_{\sigma} \cdot \Phi_{\sigma}$. Therefore it is sufficient to determine when $\square(\mathscr{S}) \mid \mathrm{Y}_{\infty}=0$ for $\mathscr{S}=\lambda \Phi_{a}$, and any $\lambda \in F(N)$ and σ.

$$
\square(\mathscr{S})=\sum_{s=0}^{k} A_{\sigma_{1} \ldots \sigma_{s}} \frac{\partial^{s}\left(\lambda \cdot \Phi_{\sigma}\right)}{\partial p_{\sigma_{1}} \ldots \partial p_{\sigma_{s}}}=
$$

$$
\begin{aligned}
& =\sum_{s=0}^{k} A_{\sigma_{1} \ldots \sigma_{s}} \sum_{l=0}^{s} \sum_{1 \leqslant i_{1}<\ldots<i_{l} \leqslant s} \frac{\partial^{l} \Phi_{\sigma}}{\overline{\partial p_{\sigma_{l_{1}}} \ldots \partial p_{\sigma_{i_{l}}}}} . \\
& \frac{\partial^{s-l} \lambda}{\partial p_{\sigma_{1}} \ldots \widehat{\partial p_{\sigma_{i_{1}}}} \ldots \widehat{\partial p_{\sigma_{i_{l}}} \ldots \partial p_{\sigma_{s}}}=} \\
& =\sum_{s=0}^{k} \sum_{l=0}^{s} C_{s}^{l} \frac{\partial^{l} \Phi_{\sigma}}{\partial p_{\nu_{1}} \ldots \partial^{-} \partial p_{\nu_{l}}} \cdot A_{\nu_{1} \ldots \nu_{l} \sigma_{1} \ldots \sigma_{s-l}} \frac{\partial^{s-l} \lambda}{\partial p_{\sigma_{1}} \ldots \partial p_{\sigma_{s-l}}}= \\
& =\sum_{r=0}^{k} \sum_{l=0}^{k-r} C_{r+l}^{l} \frac{\partial^{l} \Phi_{\sigma}}{\partial p_{\nu_{1}} \ldots \partial p_{\nu_{l}}} \cdot A_{\nu_{1} \ldots \nu_{l} \sigma_{1} \ldots \sigma_{r}} \frac{\partial^{r} \lambda}{\partial p_{\sigma_{1}} \ldots \partial p_{\sigma_{r}}} .
\end{aligned}
$$

Since $\Phi_{\sigma} \mid \mathrm{Y}_{\infty}=0$, then

$$
\begin{aligned}
\square(\mathscr{P}) \mid \mathrm{U}_{\infty}= & \sum_{r=0}^{k-1} \sum_{l=1}^{k-r} C_{r+l}^{l} \frac{\partial^{l} \Phi_{\sigma}}{\partial p_{\nu_{1}} \ldots \partial p_{\nu_{l}}} . \\
& \left.\cdot A_{\nu_{1} \ldots \nu_{l} o_{1} \ldots o_{r}} \frac{\partial^{r} \lambda}{\partial p_{\sigma_{1}} \ldots \partial p_{o_{r}}} \right\rvert\, \mathrm{Y}_{\infty} .
\end{aligned}
$$

Therefore \square is restrictable onto Ψ_{∞} if and only if

$$
\left.\sum_{l=1}^{k-r} C_{l+r}^{l} \frac{\partial^{l} \Phi_{\sigma}}{\partial p_{\nu_{1}} \ldots \partial p_{\nu_{l}}} A_{\nu_{1} \ldots \nu_{l} \sigma_{1} \ldots \sigma_{r}} \right\rvert\, \mathrm{Y}_{\infty}=0
$$

for $r=0,1,2, \ldots, k-1$; and any $\sigma_{1}, \ldots, \sigma_{r}, \sigma$.
Rewrite the last equation in the form

$$
A_{\sigma \sigma_{1} \ldots \sigma_{r}}\left|\mathrm{Y}_{\infty}=\frac{1}{r+1} \sum_{l=1}^{k-r} C_{l+r}^{l} \frac{\partial^{l} f_{\sigma}}{\partial p_{\bar{\nu}_{1}} \ldots \partial p_{\bar{\nu}_{l}}} A_{\bar{\nu}_{1} \ldots \bar{\nu}_{l} \sigma_{1} \ldots \sigma_{r}}\right| \mathrm{U}_{\infty}
$$

for $r=0,1, \ldots, k-1$ and any $\sigma_{1}, \ldots, \sigma_{r}, \sigma$ taking the form of functions Φ_{σ} into account. Denoting $r+1$ by r in this expression we get (2.5.1).

Note that formulas (2.5.1) give recursive expression for the coefficients $A_{\sigma_{1} \ldots \sigma_{s}} \mid \Psi_{\infty}$ in terms of the coefficients $A_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{r}} \mid \Psi_{\infty}$ for $s, r=1,2, \ldots, k$.

THEOREM 2.5.1. Let $\mathrm{Y}_{\infty} \subset N_{m}^{\infty}$. If $\triangle \in$ ДиФ $_{k}(F(\underline{)})$ and $\Delta(1)=$ const, then \triangle is extendable to an extrinsic secondary operator of the equation Ψ.

Proof. Let W be the same chart with coordinates q_{j}, p_{σ}^{i} as in Lemma 2.5.1. To prove the theorem it suffices to show, that in each chart W there exists an operator $\square_{w} \in F C(C(N))$, restrictable onto Ψ_{∞} and such that

$$
\square_{W} \mid \Psi_{\infty}+F C^{\prime}(C(\mathrm{Y}))=\Delta .
$$

Further, making use of the partition of unity we get the complete statement of the theorem.

In the chart $\mathrm{Y}_{\infty} \cap W$ the operator Δ is presentable in the form $\Delta=F C^{\prime}(C(\mathrm{Y}))+$ $+\bar{\square}$, where $\bar{\square} \in F C_{0}(C(\Psi)) \oplus Э_{k}(\Psi)$, due to Theorem 2.3.1. Thanks to the above we should extend $\bar{\square}$ to the operator $\square_{W} \in F C(C(N))$.

Let the operator $\bar{\square}$ in coordinates $\bar{q}_{j}, \bar{p}_{\bar{\sigma}}^{i}$ on $\Psi_{\infty} \cap W$ be the form

$$
\bar{\square}=a_{0}+\sum_{s=1}^{k} \sum_{\bar{\sigma}_{1}, \ldots, \bar{\sigma}_{s}} a_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{s}} \frac{\partial^{s}}{\partial \bar{p}_{\bar{\sigma}_{1}} \ldots \partial \bar{p}_{\bar{\sigma}_{s}}},
$$

where $a_{0}=$ const and $a_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{s}}$ are symmetric. Making use of (2.5.1) we recursively recover $\bar{b}_{\sigma_{1} \ldots \sigma_{s}}$ on $W \cap \mathrm{Y}_{\infty}$ from $a_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{r}}, r>0$. Namely set

$$
\begin{equation*}
b_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{r}}=a_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{r}} \quad \text { for } \quad r=1,2, \ldots, k \quad \text { and any } \quad \bar{\sigma}_{1}, \ldots, \bar{\sigma}_{r} \tag{2.5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{b}_{\sigma_{1} \ldots \sigma_{r}}=\frac{1}{r} \sum_{l=1}^{k-r+1} C_{l+r-1}^{l} \frac{\partial^{l} \bar{p}_{\sigma_{r}}}{\partial p_{\bar{\nu}_{1}} \ldots \partial p_{\bar{v}_{l}}} \cdot \bar{b}_{\bar{\nu}_{1} \ldots \bar{\nu}_{l} \sigma_{1} \ldots \sigma_{r-1}} \tag{2.5.3}
\end{equation*}
$$

for $r=1,2, \ldots, k$; and any $\sigma_{1}, \ldots, \sigma_{r}$.
If $\sigma_{1}=\bar{\sigma}_{1}, \ldots, \sigma_{r}=\bar{\sigma}_{r}$, then (2.5.3) is clearly of the form $\bar{b}_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{r}}=\bar{b}_{\bar{\sigma}_{r} \bar{\sigma}_{1} \ldots \bar{\sigma}_{r-1}}$ for $r=1,2, \ldots, k$, and any $\bar{\sigma}_{1}, \ldots, \bar{\sigma}_{r}$.

Therefore we may assume that (2.5.3) defines functions $\bar{b}_{\sigma_{1} \ldots \sigma_{r}}$ for any multiindices $\sigma_{1}, \ldots, \sigma_{r}$.

Show that functions $\bar{b}_{\sigma_{1} \ldots \sigma_{r}}$ are symmetric for multiindices $\sigma_{1}, \ldots, \sigma_{r}$. We prove it by induction in the number of unbarred multiindices. If there are no unbarred multiindices, then due to (2.5.2) and the symmetricity of coefficients $a_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{r}}$ of $\bar{\square}$ all the functions $\bar{b}_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{r}}$ are symmetric. Suppose that all functions $\bar{b}_{\sigma_{1} \ldots \sigma_{r}}$ with no more than s unbarred multiindices are symmetric. Let $\bar{b}_{\sigma_{1} \ldots \sigma_{r}}$ be a function with $s+1$ unbarred multiindices. If $\sigma_{r}=\bar{\sigma}_{r}$, then (2.5.3) implies $\bar{b}_{\sigma_{1} \ldots \bar{\sigma}_{r}}=b_{\bar{\sigma}_{r} \sigma_{1} \ldots \sigma_{r-1}}$. Thus the transition of the last barred multiindex the first place does not change \bar{b}. Therefore we may assume that in the last place there stands unbarred multiindex (more exactly, an underlined one) $\bar{b}_{\tau_{1} \cdots \tau_{r}}$. Then the formula (2.5.3) for $\bar{b}_{\tau_{1} \ldots I_{r}}$ and the inductive hypotheses imply that all functions
$\bar{b}_{\tau_{1} \ldots I_{r}}$ with $s+1$ unbarred indices are symmetric in the first $r-1$ multiindices. Each of these functions in presentable in the form $\bar{b}_{\left.\bar{\gamma}_{1} \cdots \bar{\tau}_{r-(}+1\right) I_{r-s} \cdots I_{r}}$. Hence, to prove the symmetricity of these functions it suffices to prove, that a) $\bar{b}_{\bar{\tau}_{1} \ldots \tau_{r-1} I_{r}}=\bar{b}_{\bar{\tau}_{1} \ldots I_{r} I_{r-1}}$ and b) $\bar{b}_{\bar{\tau}_{1} \ldots \bar{\tau}_{i} \ldots \bar{\tau}_{r-(s+1)} \ldots I_{r}}=\bar{b}_{\bar{\tau}_{1} \ldots \tau_{r} \ldots \bar{\tau}_{r-(s+1)} \ldots \bar{\tau}_{i}}$.
a) (2.5.3) implies

$$
\left.\begin{array}{l}
\bar{b}_{\tau_{1} \ldots \tau_{r-1} \tau_{r}}=\frac{1}{r} \sum_{l=1}^{k-r+1} C_{l+r-1}^{l} \frac{\partial^{l} \bar{p}_{z_{r}}}{\partial \bar{p}_{\bar{v}_{1}} \ldots \partial \bar{p}_{\bar{\nu}_{l}}} . \\
\quad \cdot \bar{b}_{\bar{v}_{1} \ldots \bar{\nu}_{l} \tau_{1} \ldots \tau_{r-1}}=\frac{1}{r} \sum_{l=1}^{k-r+1} C_{l+r-1} \frac{\partial^{l} \bar{p}_{\tau_{r}}}{\partial \bar{p}_{\bar{\nu}_{1}} \ldots \partial \bar{p}_{\bar{\nu}_{l}}} . \\
\quad\left(\frac{1}{l+r-1} \sum_{t=1}^{k-l-r+2} C_{t+l+r-2}^{t} \frac{\partial^{t} \bar{p}_{\tau_{r-1}}}{\partial \bar{p}_{\bar{\gamma}_{1}} \ldots \partial \bar{p}_{\bar{\gamma}_{t}}} \cdot \bar{b}_{\bar{\gamma}_{1} \cdots \bar{\gamma}_{t} \bar{\nu}_{1} \ldots \bar{\nu}_{l} \tau_{1} \ldots \tau_{r-2}}\right) \\
\quad=\sum_{l=1}^{k-r+1} \sum_{t=1}^{k-l-r+2} \frac{(t+l+r-2)!}{t!l!r!} \cdot \frac{\partial^{l} \bar{p}_{\tau_{r}}}{\partial \bar{p}_{\bar{\nu}_{1}} \ldots \partial \bar{p}_{\bar{\nu}_{l}}}
\end{array}\right] .
$$

In exactly the same way

$$
\begin{aligned}
& b_{\tau_{1} \cdots \bar{I}_{r} \bar{I}_{r-1}}=\sum_{t=1}^{k-r+1} \sum_{l=1}^{k-t-r+2} \frac{(t+l+r-2)!}{t!l!r!} \frac{\partial^{t} \underline{\bar{P}}_{\tau_{r}-1}}{\partial \bar{p}_{\bar{\gamma}_{1}} \ldots \partial \bar{p}_{\bar{\gamma}_{t}}} \times \\
& \quad \times \frac{\partial^{l} \bar{p}_{\tau_{r}}}{\partial \bar{p}_{\bar{v}_{1}} \ldots \partial \bar{p}_{\bar{y}_{l}}} \cdot \bar{b}_{\bar{v}_{1} \cdots \bar{\nu}_{l} \bar{\gamma}_{1} \ldots \bar{\gamma}_{t} \tau_{1} \cdots \tau_{r-2}} .
\end{aligned}
$$

Comparison of these expressions for $\bar{b}_{\tau_{1 \cdots I_{r-1} I_{r}}}$ and $\bar{b}_{\tau_{1 \cdots I_{r} I_{r-1}}}$ shows that they contain the same number of summands and the coefficients of the same terms are identical. Hence

$$
\bar{b}_{\tau_{1} \cdots \tau_{r-1} \tau_{r}}=\bar{b}_{\tau_{1} \cdots \tau_{r} \tau_{r-1}} .
$$

b) (2.5.3), the statement a) and the symmetricity of functions \bar{b} in the first $r-1$ multiindices imply for $s>0$

$$
\begin{aligned}
b_{\bar{\tau}_{1} \cdots I_{r} \ldots \bar{\tau}_{i}} & =b_{{\overline{\bar{\tau}_{i}}}_{\left.\bar{\tau}_{1} \cdots I_{r} \ldots \bar{\tau}_{r-(}+1\right) \tau_{r}-s \cdots I_{r-1}}=} \\
& =b_{\bar{\tau}_{1} \cdots \bar{\tau}_{i} \ldots \bar{\tau}_{r-(}(s+1) \tau_{r-s} \cdots \tau_{r} I_{r-1}}=\bar{b}_{\bar{\tau}_{1} \cdots \bar{\tau}_{i} \cdots I_{r-1} \tau_{r}} .
\end{aligned}
$$

If $s=0$, then the possibility to transpose the last barred multiindex to the first place and the symmetricity in the first $r-1$ multiindices imply

$$
\begin{aligned}
& \bar{b}_{\bar{\tau}_{1} \ldots \tau_{r} \ldots \bar{\tau}_{r-1}} \bar{\tau}_{i}=\bar{b}_{\bar{\tau}_{i} \bar{\tau}_{1} \ldots \bar{\tau}_{r} \ldots \bar{\tau}_{r-1}}=\ldots \\
& \ldots=\bar{b}_{\bar{\tau}_{i+1} \ldots \bar{\tau}_{r-1} \bar{\tau}_{i} \bar{\tau}_{1} \ldots \bar{\tau}_{i-1} \bar{I}_{r}}=\bar{b}_{\bar{\tau}_{1} \ldots \bar{\tau}_{r-1} \underline{\tau}_{r}} .
\end{aligned}
$$

Thus all functions $\bar{b}_{\sigma_{1} \ldots \sigma_{r}}$ are symmetric in multiindices.
Coefficients $a_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{r}}$ of the intrinsic secondary operator $\bar{\square}$ satisfy (2.3.1). Taking (2.5.2) and (2.5.3) into account these relations may be rewritten in the form

$$
\begin{equation*}
\bar{D}_{j}\left(\bar{b}_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{r}}\right)=\sum_{t=1}^{r} \bar{b}_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{t}+1_{j} \ldots \bar{\sigma}_{r}} \tag{2.5.4}
\end{equation*}
$$

for $r=1,2, \ldots, k ; j=1,2, \ldots, n$ and any $\bar{\sigma}_{1}, \ldots, \bar{\sigma}_{r}$. Now we will extend these relations to arbitrary multiindices. More exactly we will prove that

$$
\begin{equation*}
\bar{D}_{j}\left(\bar{b}_{\sigma_{1} \cdots \sigma_{r}}\right)=\sum_{t=1}^{r} \bar{b}_{\sigma_{1} \cdots \sigma_{r}+1_{j} \ldots \sigma_{r}} \tag{2.5.5}
\end{equation*}
$$

for $r=1,2, \ldots, k ; j=1,2, \ldots, n$ and any $\sigma_{1}, \ldots, \sigma_{r}$. To prove it we will make use of induction in the number of unbarred multiindices. The first step of induction is justified by the formula (2.5.4). Suppose that (2.5.5) is proved for s unbarred multiindices. Due to symmetricity we may assume that the function $\bar{b}_{\sigma_{1} \ldots \sigma_{r}}$ with $s+1$ unbarred multiindices has an unbarred multiindex in the last place. Then (2.5.3) implies

$$
\begin{aligned}
& \bar{D}_{i}\left(\bar{b}_{\sigma_{1} \ldots \sigma_{r}}\right)=\frac{1}{r} \sum_{l=1}^{k-r+1} C_{l+r-1}^{l}\left(\bar{D}_{j}\left(\frac{\partial^{l} \bar{p}_{\sigma_{r}}}{\partial \bar{p}_{\bar{\nu}_{1}} \ldots \partial \bar{p}_{\bar{v}_{l}}}\right) \cdot \bar{b}_{\bar{\nu}_{1} \ldots \bar{v}_{l} \sigma_{1} \ldots \sigma_{r-1}}+\right. \\
& \left.\quad+\frac{\partial^{l} \bar{p}_{\sigma_{r}}}{\partial p_{\bar{v}_{1}} \ldots \partial \bar{p}_{\bar{v}_{l}}} \bar{D}_{j}\left(\bar{b}_{\bar{\nu}_{1} \ldots \bar{\nu}_{l} \sigma_{1} \ldots \sigma_{r-1}}\right)\right) .
\end{aligned}
$$

Due to the inductive hypothesis

$$
\bar{D}_{i}\left(\bar{b}_{\bar{\nu}_{1} \ldots \bar{\nu}_{l} \sigma_{1} \ldots \sigma_{r-1}}\right)=\sum_{t=1}^{l} \bar{b}_{\bar{\nu}_{1} \ldots \bar{\nu}_{t}+1_{j} \ldots \bar{\nu}_{l} \sigma_{1} \ldots \sigma_{r-1}}+\sum_{t=1}^{r-1} \bar{b}_{\bar{\nu}_{1} \ldots \bar{\nu}_{l} \sigma_{1} \ldots \sigma_{t}+1_{j} \ldots \sigma_{r-1}} .
$$

Therefore

$$
\begin{aligned}
& \frac{1}{r} \sum_{l=1}^{k-r+1} C_{l+r-1}^{l} \frac{\partial^{l} \bar{p}_{\sigma_{r}}}{\partial \bar{p}_{\nu_{1}} \ldots \partial \bar{p}_{\nu_{l}}} \bar{D}_{j}\left(\bar{b}_{\bar{\nu}_{1} \ldots \bar{\nu}_{l} \sigma_{1} \ldots \sigma_{r-1}}\right)= \\
& \quad=\sum_{t=1}^{r-1} \bar{b}_{\sigma_{1} \ldots \sigma_{t}+1_{j} \ldots \sigma_{r-1} \sigma_{r}}+\frac{1}{r} \sum_{l=1}^{k-r+1} \sum_{t=1}^{l} \mathrm{x} \\
& \quad \times C_{l+r-1}^{l} \frac{\partial^{l} \bar{p}_{\sigma_{r}}}{\partial \bar{p}_{\bar{\nu}_{1}} \ldots \partial \bar{p}_{\bar{\nu}_{l}}} \bar{b}_{\bar{\nu}_{1} \ldots \bar{v}_{t}+1_{j} \ldots \bar{\nu}_{l} \sigma_{1} \ldots \sigma_{r-1}}= \\
& \quad=\sum_{t=1}^{r-1} \bar{b}_{\sigma_{1} \ldots \sigma_{t}+1_{j} \ldots \sigma_{r}}+\frac{1}{r} \sum_{l=1}^{k-r+1} l \times \\
& \quad \times C_{l+r-1}^{l} \frac{\partial^{l} \bar{p}_{\sigma_{r}}}{\partial \bar{p}_{\bar{\nu}_{1}} \ldots \partial \bar{p}_{\bar{\nu}_{l}}} \bar{b}_{\bar{\nu}_{1} \ldots \bar{\nu}_{l-1} \bar{\nu}_{l}+1_{j} \sigma_{1} \ldots \sigma_{r-1}}
\end{aligned}
$$

Further, since

$$
\begin{aligned}
& \bar{D}_{j} \circ \frac{\partial^{l}}{\partial \bar{p}_{\bar{\nu}_{1}} \ldots \partial \bar{p}_{\bar{\nu}_{l}}}=\frac{\partial^{l}}{\partial \bar{p}_{\bar{\nu}_{1}} \ldots \partial \bar{p}_{\bar{\nu}_{l}}} \circ \bar{D}_{j}+\left[\bar{D}_{j}, \frac{\partial^{l}}{\partial \bar{p}_{\bar{\nu}_{1}} \ldots \partial \bar{p}_{\bar{\nu}_{l}}}\right]= \\
& =\frac{\partial^{l}}{\partial \bar{p}_{\bar{\nu}_{1}} \ldots \partial \bar{p}_{\bar{v}_{l}}} \circ \bar{D}_{j}-\sum_{t=1}^{l} \sum_{1 \leqslant i_{1}<\ldots<i_{t} \leqslant l} \frac{\partial^{t} \bar{p}_{\bar{\tau}_{+1}}}{\partial \bar{p}_{\bar{v}_{i_{1}}} \ldots \partial \bar{p}_{\bar{v}_{i_{t}}}} \times \\
& \times \frac{\partial^{l-t+1}}{\partial \bar{p}_{\bar{\nu}_{1}} \ldots \widehat{\partial \widehat{p}_{\bar{\nu}_{i_{1}}} \ldots \widehat{\partial} \bar{p}_{\bar{\nu}_{i_{t}}} \ldots \partial \bar{p}_{\bar{\nu}_{l}} \partial \bar{p}_{\bar{\tau}}},}
\end{aligned}
$$

then

$$
\begin{aligned}
& \frac{1}{r} \sum_{l=1}^{k-r+1} C_{l+r-1}^{l} \bar{D}_{j}\left(\frac{\partial^{l} \bar{p}_{\sigma_{r}}}{\partial \bar{p}_{\bar{\nu}_{1}}-\frac{\partial \bar{p}_{\bar{\nu}_{l}}}{}}\right) \cdot \bar{b}_{\bar{\nu}_{1} \cdots \bar{\nu}_{l} \sigma_{1} \ldots \sigma_{r-1}}= \\
& =\frac{1}{r} \sum_{l=1}^{k-r+1} C_{l+r-1}^{l} \frac{\partial^{l} \bar{p}_{\sigma_{r}+1}}{\partial \bar{p}_{\bar{\nu}_{1}} \ldots \partial \bar{p}_{\bar{\nu}_{l}}} \cdot \bar{b}_{\bar{v}_{1} \ldots \bar{\nu}_{l} \sigma_{1} \ldots o_{r-1}}- \\
& -\frac{1}{r} \sum_{l=1}^{k-r+1} C_{l+r-1}^{l} \sum_{t=1}^{l} \sum_{1 \leqslant i_{1}<\ldots<i_{t} \leqslant l} \frac{\partial^{t} \bar{p}_{\bar{\tau}+\mathbf{1}_{j}}}{\partial \bar{p}_{\bar{v}_{i_{1}}} \ldots \partial \bar{p}_{\bar{v}_{i_{\tau}}}} \times \\
& \times \frac{\partial^{l-t+1} \bar{p}_{\sigma_{r}}}{\partial \bar{p}_{\bar{\nu}_{1}} \ldots \partial \overline{\bar{p}}_{\bar{\nu}_{i_{1}}} \ldots \widehat{\partial} \bar{p}_{\bar{\nu}_{i_{t}}} \ldots \partial \bar{p}_{\bar{\nu}_{l}} \partial \bar{p}_{\bar{\tau}}} \times \bar{b}_{\bar{\nu}_{1} \ldots \bar{\nu}_{l} \sigma_{1} \ldots \sigma_{r-1}}=
\end{aligned}
$$

$$
\begin{aligned}
& =\bar{b}_{\sigma_{1} \ldots \sigma_{r-1} \sigma_{r}+1}-\frac{1}{r} \sum_{l=1}^{k-r+1} \sum_{t=1}^{l} C_{l+r-1}^{l} C_{l}^{t} \frac{\partial^{t} \bar{p}_{\bar{\gamma}+1_{j}}}{\partial \bar{p}_{\bar{\gamma}_{1}} \ldots \partial \bar{p}_{\bar{\gamma}_{t}}} \times \\
& \times \frac{\partial^{l-t+1} \bar{p}_{\sigma_{r}}}{\partial \bar{p}_{\bar{\gamma}_{1}} \ldots \partial \bar{p}_{\bar{\gamma}_{l-t}}} \cdot \bar{b}_{\bar{\gamma}_{1} \ldots \bar{\gamma}_{t} \bar{\nu}_{1} \ldots \bar{y}_{l-t} \sigma_{1} \ldots \sigma_{r-1}}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \bar{D}_{j}\left(\bar{b}_{\sigma_{1} \ldots \sigma_{r}}\right)=\sum_{t=1}^{r} \bar{b}_{\sigma_{1} \ldots \sigma_{t}+1_{j} \ldots \sigma_{r}}+ \\
& \quad+\left\{\frac{1}{r} \sum_{l=1}^{k-r+1} l C_{l+r-1}^{l} \frac{\partial^{l} \bar{p}_{\sigma_{r}}}{\partial \bar{p}_{\bar{\nu}_{1}} \ldots \partial \bar{p}_{\bar{v}_{l}}} \cdot \bar{b}_{\bar{\nu}_{1} \ldots \bar{\nu}_{l-1} \bar{\nu}_{l}+1_{j} \sigma_{1} \ldots \sigma_{r-1}-}\right. \\
& \quad-\frac{1}{r} \sum_{l=1}^{k-r+1} \sum_{t=1}^{l} C_{l+r-1}^{l} C_{l}^{t} \frac{\partial^{t} \bar{p}_{\bar{\tau}+1_{j}}}{\partial \bar{p}_{\bar{\gamma}_{1}} \ldots \partial \bar{p}_{\bar{\gamma}_{t}}} \times \\
& \left.\quad \times \frac{\partial^{l-t+1} \bar{p}_{\sigma_{r}}}{\partial \bar{p}_{\bar{\nu}_{1}} \ldots \partial \bar{p}_{\bar{\nu}_{l-t}} \partial \bar{p}_{\bar{\tau}}} \cdot \bar{b}_{\bar{\gamma}_{l} \ldots \bar{\gamma}_{t} \bar{\nu}_{1} \ldots \bar{\nu}_{l-t} \sigma_{1} \ldots \sigma_{r-1}}\right\}
\end{aligned}
$$

Now, prove that the expression in brackets vanishes. Applying (2.5.3) to $\bar{b}_{\bar{\nu}_{1} \ldots \bar{\nu}_{l}+1_{j} \sigma_{1} \ldots \sigma_{r-1}}$, we get

$$
\begin{aligned}
& \frac{1}{r} \sum_{l=1}^{k-r+1} l C_{l+r-1}^{l} \frac{\partial^{l} \bar{p}_{\sigma_{r}}}{\partial \bar{p}_{\bar{\nu}_{1}} \ldots \partial \bar{p}_{\bar{\nu}_{l}}} \cdot\left(\frac{1}{l+r-1} \sum_{s=1}^{k-l-r+2} \times\right. \\
& \left.\times C_{s+l+r-2}^{s} \frac{\partial^{s} \bar{p}_{\bar{\nu}_{l}+1_{j}}}{\partial \bar{p}_{\bar{\gamma}_{1}} \ldots \partial \bar{p}_{\bar{\gamma}_{s}}} \cdot b_{\bar{\gamma}_{1} \ldots \bar{\gamma}_{s} \bar{\nu}_{1} \ldots \bar{l}_{l-1} \sigma_{1} \ldots \sigma_{r-1}}\right)= \\
& \quad=\frac{1}{r} \sum_{l=1}^{k-r+1} \sum_{s=1}^{k-l-r+2} \frac{1}{l+r-1} l C_{l+r-1}^{l} C_{s+l+r-2}^{s} \frac{\partial^{l} \bar{p}_{\sigma_{r}}}{\partial \bar{p}_{\bar{\nu}_{1}} \ldots \partial \bar{p}_{\bar{\nu}_{l}}} \times \\
& \quad \times \frac{\partial^{s} \bar{p}_{\nu_{l}+1_{j}}}{\partial \bar{p}_{\gamma_{1}} \ldots \partial \bar{p}_{\gamma_{s}}} \cdot \bar{b}_{\bar{\gamma}_{1} \ldots \bar{\gamma}_{s} \bar{v}_{1} \ldots \bar{\nu}_{l-1}} \sigma_{1 \ldots \sigma_{r-1}} .
\end{aligned}
$$

Thus the expression in brackets may be rewritten as

$$
\left(\frac{1}{r} \sum_{l=1}^{k-r+1} \sum_{s=1}^{k-l-r+2} \frac{l}{l+r-1} C_{l+r-1}^{l} C_{s+l+r-2}^{s} \frac{\partial^{l} \bar{p}_{\sigma_{r}}}{\partial \bar{p}_{\bar{\nu}_{1}} \ldots \partial \bar{p}_{\bar{\nu}_{l}}} \times\right.
$$

$$
\begin{aligned}
& \left.\times \frac{\partial^{s} \bar{p}_{\bar{\nu}_{l}+1_{j}}}{\partial \bar{p}_{\bar{\gamma}_{1}} \ldots \partial \bar{p}_{\bar{\gamma}_{s}}} \cdot b_{\bar{\gamma}_{1} \ldots \bar{\gamma}_{s} \bar{\nu}_{1} \ldots \bar{\nu}_{l-1} \sigma_{1} \ldots \sigma_{r-1}}\right)- \\
& -\left(\frac{1}{r} \sum_{l=1}^{k-r+1} \sum_{t=1}^{l} C_{l+r-1}^{l} C_{l}^{t} \frac{\partial^{t} \bar{p}_{\bar{\tau}+1_{j}}}{\partial \bar{p}_{\bar{\gamma}_{1}} \ldots \partial \bar{p}_{\bar{\gamma}_{t}}} \times\right. \\
& \left.\times \frac{\partial^{l-t+1} \bar{p}_{\sigma_{r}}}{\partial \bar{p}_{\bar{\nu}_{1}} \ldots \partial \bar{p}_{\bar{\nu}_{l-t}} \partial \bar{p}_{\bar{\tau}}} \cdot b_{\bar{\gamma}_{1} \ldots \bar{\gamma}_{t} \bar{\nu}_{1} \ldots \bar{\nu}_{l-t} \sigma_{1} \ldots \sigma_{r-1}}\right) .
\end{aligned}
$$

Obviously, both parentheses contain the same number of summands and same summands have the same coefficients. Hence the expression in brackets vanishes. Thus (2.5.5) is true for all multiindices.

Rewrite (2.5.5) in the form

$$
\begin{equation*}
\bar{b}_{\sigma_{1} \ldots \sigma_{r-1} \sigma_{r}+1_{j}}=\bar{D}_{j}\left(\bar{b}_{\sigma_{1} \ldots \sigma_{r-1} \sigma_{r}}\right)-\sum_{t=1}^{r-1} \bar{b}_{\sigma_{1} \ldots \sigma_{t}+1_{j} \ldots \sigma_{r}} \tag{2.5.6}
\end{equation*}
$$

for $r=1,2, \ldots, k ; j=1,2, \ldots, n$; and any $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}$ and observe that all functions $\bar{b}_{\sigma_{1} \ldots \sigma_{r}}$ are recurrently expressed in terms of functions $\bar{b}_{\sigma_{1} \ldots \sigma_{s} 0}$, where $0=\binom{i}{(0, \ldots, 0)}=\binom{i}{0}, s=1,2, \ldots, k-1$, for any $\sigma_{1}, \ldots, \sigma_{s}$ via (2.5.6).

Now we extend each function $\bar{b}_{\sigma_{1} \ldots \sigma_{s} 0}^{i_{1} \ldots i_{s} i}$ in some way to a function $b_{\sigma_{1} \ldots \sigma_{s} 0}^{i_{1} \ldots i_{s} i}$ in the domain W and consider the operator $\nabla=\left(\nabla_{1}, \nabla_{2}, \ldots, \nabla_{m}\right)$, where

$$
\nabla_{i}=\sum_{s=0}^{k} \sum_{\sigma_{1}, \ldots, \sigma_{s}} b_{\sigma_{1} \ldots \sigma_{s} 0}^{i_{1} \ldots i_{s} i} \frac{\partial^{s}}{\partial p_{\sigma_{1}}^{i_{1}} \ldots \partial p_{\sigma_{s}}^{i_{s}}}
$$

The coefficients of the secondary operator

$$
\square_{w}=a_{0}+\ni_{\nabla}=a_{0}+\sum_{r=1}^{k} \sum_{a_{1}, \ldots, \sigma_{r}} A_{\sigma_{1} \ldots \sigma_{r}} \frac{\partial^{r}}{\partial p_{\sigma_{1}} \ldots \partial p_{\sigma_{r}}}
$$

satisfy the relations (2.4.5):

$$
A_{\sigma_{1} \ldots \sigma_{r-1} \sigma_{r}+1_{j}}=D_{j}\left(A_{\sigma_{1} \ldots \sigma_{r}}\right)-\sum_{t=1}^{r-1} A_{\sigma_{1} \ldots \sigma_{t}+1_{j} \ldots \sigma_{r}}
$$

for $r=1,2, \ldots, k ; j=1,2, \ldots, n$; and any $\sigma_{1}, \ldots, \sigma_{r}$. Therefore

$$
A_{\sigma_{1} \ldots \sigma_{r-1} \sigma_{r}+1}\left|Ч_{\infty}=\bar{D}_{j}\left(A_{\sigma_{1} \ldots \sigma_{r}} \mid Ч_{\infty}\right)-\sum_{t=1}^{r-1} A_{\sigma_{1} \ldots \sigma_{t}+1_{j} \ldots \sigma_{r}}\right| Ч_{\infty}
$$

for $r=1,2, \ldots, k ; j=1,2, \ldots, n$; and any $\sigma_{1}, \ldots, \sigma_{r}$. Comparing the last relations with (2.5.6) and taking into account that

$$
A_{\sigma_{1} \ldots \sigma_{r-1} 0}\left|\Psi_{\infty}=b_{\sigma_{1} \ldots \sigma_{r-1}}\right| \Psi_{\infty}=\bar{b}_{\sigma_{1} \ldots \sigma_{r-1}} 0
$$

we see that

$$
\begin{equation*}
A_{\sigma_{1} \ldots \sigma_{r}} \mid \mathrm{\Psi}_{\infty}=\bar{b}_{\sigma_{1} \ldots \sigma_{r}} \text { for } r=1,2, \ldots, k ; \text { and any } \sigma_{1}, \ldots, \sigma_{r} \tag{2.5.7}
\end{equation*}
$$

Since $\bar{b}_{\sigma_{1} \ldots \sigma_{r}}$ are symmetric, then

$$
\left.\frac{1}{r!} A_{\left(\sigma_{1} \ldots \sigma_{r}\right)} \right\rvert\, \Psi_{\infty}=\bar{b}_{\sigma_{1} \ldots \sigma_{r}}
$$

for $r=1,2, \ldots, k$; and any $\sigma_{1}, \ldots, \sigma_{r}$ where $A_{\left(\sigma_{1} \ldots \sigma_{r}\right)}=\sum_{g \in S_{r}} A_{\sigma_{g(1) \ldots} \sigma_{g(r)}}$ and S_{r} is the permutation group of r elements. Therefore (2.5.3) is identical to conditions (2.5.1) of restrictability of \square_{w} with symmetrized coefficients onto Ψ_{∞}. Thus \square_{W} is restrictable onto $\Psi_{\infty} \cap W$. In particular, (2.5.7), implies

$$
A_{\left(\bar{\sigma}_{1} \ldots \bar{\sigma}_{r}\right)} \mid \Psi_{\infty}=\bar{b}_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{r}}=a_{\bar{\sigma}_{1} \ldots \bar{\sigma}_{r}}
$$

for $r=1,2, \ldots, k$, and any $\bar{\sigma}_{1}, \ldots, \bar{\sigma}_{r}$, i.e. $\bar{\square}_{W} \mid \mathrm{Y}_{\infty} \cap W=\square$.
COROLLARY. Let $\mathrm{Y} \subset J^{k} \uparrow$. Then any $\bar{\Delta} \in Э_{k}(Ч)$ is extendable to an operator $\Delta \in Э_{k}(\mathbb{q})$.

§3. SECONDARY DIFFERENTIAL OPERATORS. FUNCTIONAL APPROACH

3.1. Disadvantages of geometric approach to the secondary operators theory are that it is not clear on what kind of objects secondary operators act. The answer to this question seems actual especially since we have defined secondary operators as cosets of differential operators on Ψ_{∞} and a priori it is not clear on what objects such cosets may act. More exactly, such a coset correctly determines an \mathbb{R}-linear mapping of the space of functions constant on leaves of the foliation $\mathcal{C}(\Psi)$ into itself. However, as a rule, this space consists of constants (see [5]) and all its \mathbb{R}-linear maps are operators from ДиФ $(F(\Psi))=\mathbb{R}$. Thus, if we accept a too formal approach, the existence of secondary operators of non-zero order forces us to doubt whether the approach put forward in the previous section is well justified.

The simplest way of reacting in the described situation (keeping in mind
virtual particles of contemporary quantum field theory and virtuality of the bundle $\Psi_{\infty} \rightarrow$ Sol Ψ) is to consider secondary operators as virtual ones, i.e. operators able to act on something only under certain favourable conditions.

However we migth attempt to make the secondary operators act not on functions but on some other objects. In this section we find such an action under another «functional» approach to constructing secondary differential operators. The idea is that from the very beginning we should determine smooth functions on the «manifold» Sol Ψ and only afterwards the secondary differential operators as localizable operators acting on these functions.
3.2. A «smooth function» on the «manifold» Sol 4 is a cohomology class $\Omega \in$ $\in \bar{H}^{n}\left(Ч_{\infty}\right)$ (see n. 1.6), where n is a number of independent variables. If L is an n-dimensional integral manifold of the Cartan distribution on Ψ_{∞}, i.e. L is a point of $\mathrm{Sol} \mathrm{\Psi}$, then one can understand image the value of the «function» Ω at a «point» L as $\Omega\left|L=\int_{L} \omega\right| L$, where $\omega \in \bar{\Lambda}^{n}(\mathrm{Y})$ is a horizontal form on Y_{∞} representing Ω. Recall (see, e.g. [5]) that $\Omega \mid L$ is naturally considered as an element de Rham cohomology group $H^{n}(L)$ and Ω as the «action», i.e. an expression of the form $\int \mathscr{L}\left(q_{j}, p^{i}, p_{a}^{i}\right) \mathrm{d} q, \mathrm{~d} p=\mathrm{d} q_{1} \wedge \ldots \wedge \mathrm{~d} q_{n}$. The above point of view is motivated in many ways (see e.g. [1]). Here we draw the reader's attention to the fact that functions introduced on Sol 4 are also of virtual character, because the integration $\int_{L} \omega \mid L$ is in general impracticable.

Now we are to define differential operators as some maps from $\bar{H}^{n}(\Psi)$ into itself. Here we encounter an obstacle: the group $\bar{H}^{n}(\Psi)$ is not, in general, an $F(\mathrm{Y})$-module. Therefore we can not make use of the standard algebraic definitions (see [3]). Since $\bar{H}^{n}(\Psi)=\bar{\Lambda}^{n}(\Psi) / \overline{\mathrm{d}} \bar{\Lambda}^{n-1}(\mathrm{\Psi})$ and $\bar{\Lambda}^{n}(\mathrm{Y})$ is an $F(\mathrm{Y})$-module, we can understand under a differential operator acting in $\bar{H}^{n}(\Psi)$ a differential operator $\Delta: \bar{\Lambda}^{n}(\mathrm{\Psi}) \longrightarrow \bar{\Lambda}^{n}(\mathrm{\Psi})$, such that

$$
\Delta\left(\overline{\mathrm{d}} \bar{\Lambda}^{n-1}(\mathrm{Y})\right) \subset \overline{\mathrm{d}}\left(\bar{\Lambda}^{n-1}(\mathrm{Y})\right) .
$$

Indeed, this operator Δ naturally gives rise to a map $\bar{H}^{n}(\Psi) \longrightarrow \bar{H}^{n}(\Psi)$.
The above should be clarified. Namely, set

$$
\begin{aligned}
\overline{\operatorname{Diff}}\left(\bar{\Lambda}^{n}(\Psi), \bar{\Lambda}^{n}(\Psi)\right)= & \left\{\Delta \in \operatorname { D i f f } \left(\bar{\Lambda}^{n}(\Psi),\right.\right. \\
& \left.\left.\bar{\Lambda}^{n}(\Psi)\right) \mid \Delta\left(\overline{\mathrm{d}} \bar{\Lambda}^{n-1}(\Psi)\right) \subset \overline{\mathrm{d}} \bar{\Lambda}^{n-1}(\Psi)\right\}, \\
\underline{\operatorname{Diff}}\left(\bar{\Lambda}^{n}(\Psi), \bar{\Lambda}^{n}(Ч)\right)= & \left\{\Delta \in \operatorname { D i f f } \left(\bar{\Lambda}^{n}(\Psi),\right.\right. \\
& \left.\left.\bar{\Lambda}^{n}(\Psi)\right) \mid \Delta\left(\bar{\Lambda}^{n}(\Psi)\right) \subset \overline{\mathrm{d}} \bar{\Lambda}^{n-1}(\Psi)\right\} .
\end{aligned}
$$

Clearly, $\operatorname{Diff}\left(\bar{\Lambda}^{n}(\Psi), \bar{\Lambda}^{n}(\Psi)\right)$ is a two-sided ideal in the \mathbb{R}-algebra $\overline{\operatorname{Diff}}\left(\bar{\Lambda}^{n}(\Psi)\right.$, $\left.\bar{\Lambda}^{n}(\mathrm{Y})\right)$. Therefore the quotient algebra

$$
\text { Диф }\left(\bar{H}^{n}(Ч), \bar{H}^{n}(Ч)\right)=\overline{\operatorname{Diff}}\left(\bar{\Lambda}^{n}(\Psi), \bar{\Lambda}^{n}(\Psi)\right) / \underline{\operatorname{Diff}}\left(\bar{\Lambda}^{n}(Ч), \bar{\Lambda}^{n}(\Psi)\right)
$$

is defined.

DEFINITION. Elements of the algebra ДиФ ($\left.\bar{H}^{n}(Ч), \bar{H}^{n}(\Psi)\right)$ are called secondary functional differential operators of the equation Ψ.
3.3. Now our aim is to prove that both definitions of secondary differential operators coincide when $\Psi_{\infty}=J^{\infty} \|$. For this we will need the following results.

Each vertical operator $\Delta \in \operatorname{Diff}_{k}(F(\mathbb{\top}))$ defines an operator $\tilde{\Delta} \in \operatorname{Diff}\left(\bar{\Lambda}^{n}(\mathbb{\uparrow})\right.$, $\bar{\Lambda}^{n}(\mathbb{\|})$) by the formula

$$
\widetilde{\Delta}\left(f \cdot \bar{\omega}_{0}\right)=\Delta(f) \cdot \bar{\omega}_{0}
$$

where $f \in F(\mathbb{T}), \bar{\omega}_{0} \in \bar{\Lambda}^{n}(\mathbb{\uparrow})$ and $\bar{\omega}_{0}$ is a local volume form on the manifold M. Since Δ is vertical, $\widetilde{\Delta}$ is clearly well defined.

LEMMA 3.3.1. Let $\Delta \in \operatorname{Diff}(F(\mathbb{T}))$ be a vertical operator. If $\operatorname{im} \widetilde{\Delta} \subset \overline{\mathrm{d}} \bar{\Lambda}^{n-1}(\mathbb{\uparrow})$, then $\Delta=0$.

Proof. Let im $\Delta \subset \overline{\mathrm{d}} \bar{\Lambda}^{n-1}(\mathbb{\|})$. Then $\mathscr{E}(\Delta(\bar{\omega}))=0$ for each form $\bar{\omega} \in \bar{\Lambda}^{n}(\mathbb{\|})$, where \mathscr{E} is the Euler operator. Let $f \in F(\mathbb{\|})$ and $g \in C^{\infty}(M) \subset F(\mathbb{\|})$. Then

$$
\widetilde{\Delta}\left(g \cdot f \cdot \bar{\omega}_{0}\right)=\Delta(g \cdot f) \bar{\omega}_{0}=g \Delta(f) \cdot \bar{\omega}_{0}
$$

and

$$
0=\mathscr{E}\left(\widetilde{\Delta}\left(g \cdot f \cdot \bar{\omega}_{0}\right)=l_{\widetilde{\Delta}\left(g \cdot f \cdot \bar{\omega}_{0}\right)}^{*}(1)=l_{g \cdot \Delta(f) \cdot \bar{\omega}_{0}}^{*}(1)=l_{\Delta(f) \bar{\omega}_{0}}^{*}(g)\right.
$$

Since operators $l_{\bar{\omega}}^{*}$ are C-differential, $l_{\Delta(f) \cdot \bar{\omega}_{0}}^{*} \equiv 0$. Therefore $l_{\Delta(f) \bar{\omega}_{0}} \equiv 0$, too. The latter is equivalent to $\Delta(f) \in C^{\infty}(M)$. Thus we get $\Delta(f) \in C^{\infty}(M)$ for any $f \in F(\mathbb{I})$. Then $\frac{\partial}{\partial p_{\sigma}^{i}}(\Delta(f))=0$ for each coordinate function p_{σ}^{i}, i.e. $\frac{\partial}{\partial p_{\sigma}^{i}} \circ \Delta \equiv 0$. It clearly implies $\Delta=0$.

Each operator $\Delta \in Э_{k}(\mathbb{9})$ is vertical, therefore it defines the operator $\widetilde{\Delta} \in \operatorname{Diff}_{k}\left(\bar{\Lambda}^{n}(\mathbb{\Psi}), \bar{\Lambda}^{n}(\mathbb{\Pi})\right)$. Denote the space of these operators by $\widetilde{Э}_{k}(\mathbb{\Psi})$.

THEOREM 3.3.1. 1) The space $\widetilde{Э}_{k}(\mathbb{\top})$ is a subspace of $\overline{\operatorname{Diff}}_{k}\left(\bar{\Lambda}^{n}(\mathbb{T}), \bar{\Lambda}^{n}(\mathbb{1})\right), 1 \geqslant$ $\geqslant k<\infty$;
2) $\overline{\operatorname{Diff}_{k}}\left(\bar{\Lambda}^{n}(\mathbb{T}), \bar{\Lambda}^{n}(\mathbb{\mathbb { T }})\right)=\underline{\operatorname{Diff}}{ }_{k}\left(\bar{\Lambda}^{n}(\mathbb{T}), \bar{\Lambda}^{n}(\mathbb{T})\right) \oplus \mathbb{R} \oplus \widetilde{Э}_{k}(\mathbb{\mathbb { T }})$.

Proof. It suffices to prove both statements in a chart with canonical coordinates
q_{j}, p_{σ}^{i}. In these coordinates each element from $\overline{\mathrm{d}} \bar{\Lambda}^{n-1}(\mathbb{T})$ is presentable in the form $\sum_{j=1}^{n} D_{j}\left(\mathscr{S}_{j}\right) \bar{\omega}_{0}$, where $\mathscr{S}_{j} \in F(\mathbb{I}), \bar{\omega}_{0}=\mathrm{d} q_{1} \wedge \ldots \wedge \mathrm{~d} q_{n}$. Since any operator $\Delta \in \exists_{k}(\mathbb{G})$ commutes with $D_{j}, j=1,2, \ldots, n$, then

$$
\tilde{\Delta}\left(\sum_{j=1}^{n} D_{i}\left(\mathscr{S}_{j}\right) \bar{\omega}_{0}\right)=\sum_{j=1}^{n} \Delta\left(D_{j}\left(\mathscr{S}_{j}\right)\right) \bar{\omega}_{0}=\sum_{i=1}^{n} D_{i}\left(\Delta\left(\mathscr{S}_{j}\right)\right) \bar{\omega}_{0} .
$$

The first statement is proved.
To prove the second statement write the operator $\Delta \in \overline{\operatorname{Diff}}\left(\overline{\Lambda^{n}}(\mathbb{\Pi}), \overline{\Lambda^{n}}(\mathbb{(T)})\right.$ in coordinates q_{j}, p_{o}^{i} :

$$
\Delta=\bar{\omega}_{0} \otimes \sum_{s+|\tau|=0}^{k} a_{\sigma_{1} \ldots \sigma_{s} \tau}^{i_{1} \cdots i_{s}} \frac{\partial^{s+|\tau|}}{\partial p_{\sigma_{1}}^{i_{1}} \ldots \partial p_{\sigma_{s}}^{i_{s}} \partial q_{\tau}}=\bar{\omega}_{0} \otimes \Delta_{\bar{\omega}_{0}} .
$$

Due to Remark of n. $1.5 \Delta_{\bar{\omega}_{0}}$ is uniquely presentable in the form

$$
\Delta_{\bar{\omega}_{0}}=\sum_{|\sigma| \geqslant 0} D_{\sigma} \circ \square_{\sigma}
$$

where \square_{σ} are vertical operators. Set

$$
\nabla_{\bar{\omega}_{0}}=\sum_{|\sigma|>0} D_{\sigma} \circ \square_{\sigma} .
$$

Then $\Delta=\nabla+\square$. We have $\nabla \in \underline{\operatorname{Diff}}\left(\bar{\Lambda}^{n}(\mathbb{\Pi}), \bar{\Lambda}^{n}(\mathbb{\top})\right)$. Indeed, the condition $\nabla^{\prime}\left(\bar{\Lambda}^{n}\right) \subset$ $\subset \overline{\mathrm{d}} \bar{\Lambda}^{n-1}(\mathbb{T})$ is equivalent to the condition $\nabla_{\bar{\omega}_{0}}^{\prime}(F(\mathbb{G})) \subset \sum_{j=1}^{n} D_{j}(F(\mathbb{G}))$ verified by $\nabla_{\bar{\omega}_{0}}$. Since $\Delta, \nabla \in \overline{\operatorname{Diff}}\left(\bar{\Lambda}^{n}(\mathbb{T}), \bar{\Lambda}^{n}(\mathbb{q})\right)$, then $\square=\Delta-\nabla \in \overline{\operatorname{Diff}}\left(\bar{\Lambda}^{n}(\mathbb{T}), \bar{\Lambda}^{n}(\mathbb{T})\right)$ or equivalenty $\square_{\bar{\omega}_{0}}\left(\sum_{i=1}^{n} D_{j}(F(\pi)) \subset \sum_{j=1}^{n} D_{j}(F(\pi))\right.$.

But the latter is equivalent to $\left[D_{j}, \square_{\bar{\omega}_{0}}\right](F(\mathbb{\top})) \subset \sum_{j=1}^{n} D_{j}(F(\mathbb{G}))$ for any $j=1,2$, \ldots, n. Now Lemma 3.3.1 implies $\left[D_{j}, \square_{\bar{\omega}_{0}}\right]=0$ for any $j=1,2, \ldots, n$, since $\left[D_{j}, \square_{\bar{\omega}_{0}}\right]$ is a vertical operator. Therefore $\square_{\bar{\omega}_{0}} \in \mathbb{R} \oplus Э_{k}(\mathbb{q})$ and $\square \in \mathbb{R} \oplus$ $\oplus \widetilde{Э}_{k}(\mathbb{G})$.

COROLLARY. Ди $_{k}\left(\bar{H}^{n}(\mathbb{\top}), \bar{H}^{n}(\mathbb{T})\right)=\widetilde{Э}_{k}(\mathbb{\top}) \oplus \mathbb{R}$.
REMARK. A trivial example of euqation $\mathrm{Y}=\left\{p_{1}=0\right\} \subset \mathscr{T}^{1} 1_{\mathbb{R}}$ shows that if $\Psi_{\infty} \neq \mathscr{T}^{\infty} \mathbb{\mathbb { M }}$, then ДиФ $\Phi_{k}\left(\bar{H}^{n}(Ч), \bar{H}^{n}(Ч)\right) \neq \widetilde{Э}_{k}(\Psi) \oplus \mathbb{R}$ in general.
3.4. One may define secondary differential operators of infinite order literally
following the above geometrical or functional definition of the finite order secondary operators. We mean that an infinite order differential operator is an \mathbb{R}-linear map $\Delta: F(\mathrm{Y}) \longrightarrow F(\mathrm{Y})$ satisfying the following conditions:

1) $\Delta\left(F_{i}(\mathrm{Y})\right) \subset F_{i+j}(\mathrm{\Psi}), j=j(i)$; 2) $\Delta \mid F_{i}(\mathrm{Y})$ is a differential operator of order $k=k(i)$ and $k(0) \leqslant k(1) \leqslant k(2) \leqslant \ldots$. It is quite clear that all results of this paper are true in the case of the infinite order secondary operators.

§4. APPROXIMATION OF SECONDARY OPERATORS BY AVOLUTION DIFFERENTIATIONS

4.1. It is well known that each scalar differential k-th order operator on a smooth manifold is presentable as a sum of compositions of $1^{\text {st }}$ order operators and a free term. Does this fact hold for secondary operators? The following example shows, that the answer to this question is negative.

Example. Let $\mathbb{I}=\mathbb{1}_{\mathbb{R}}, \nabla=\sum_{i=0}^{\infty} p_{i^{2}} \frac{\partial}{\partial p_{i}}$, where q, p_{i} are canonical coordinates on $\mathscr{T}^{\infty} \mathbb{1}_{\mathbb{R}}$. Then \ni_{∇} is not be presentable in the form

$$
\begin{equation*}
\ni_{\nabla}=\sum_{s=1}^{l} \ni_{\varphi_{s}} \circ \ni_{\psi_{s}}+\sum_{r=1}^{l} \ni_{f_{r}} \tag{4.1.1}
\end{equation*}
$$

To make sure of this, note that the coefficients of secondary operators of the form

$$
\ni_{\square}=\sum_{i, j} a_{i j} \frac{\partial^{2}}{\partial p_{i} \partial p_{j}}
$$

satisfy

$$
a_{i j}=\sum_{s=0}^{j}(-1)^{s} C_{j}^{s} D^{j-s}\left(a_{i+s 0}\right)
$$

which follows from the recursion (2.4.5) and Remark 3 of n. 2.4. For \ni_{∇} it implies

$$
a_{i 0}+a_{0 i}=p_{i^{2}}+\sum_{s=0}^{i}(-1)^{s} C_{i}^{s} D^{i-s}\left(p_{s^{2}}\right)
$$

This formula shows that functions $a_{i 0}+a_{0 i}$ are of the form

$$
\begin{equation*}
a_{i 0}+a_{0 i}=p_{i^{2}}+f\left(p, \ldots, p_{i^{2}-1}\right) \tag{4.1.2}
\end{equation*}
$$

On the other hand, (4.1.1) implies

$$
\begin{equation*}
a_{i 0}+a_{0 i}=\sum_{s=1}^{l}\left(D^{i}\left(\mathscr{S}_{s}\right) \cdot \psi_{s}+\mathscr{S}_{s} D^{i}\left(\psi_{s}\right)\right) \tag{4.1.3}
\end{equation*}
$$

Let k be the maximum number of variables p_{j} on which functions \mathscr{S}_{s} and ψ_{s}, $s=1,2, \ldots, l$, depend. Then functions $a_{i 0}+a_{0 i}$ do not depend on variables $p_{j}, j>k+i$ as follows from (4.1.3). It contradicts (4.1.2).
4.2. However it turns out that any secondary operator may be locally approximated with any accuracy by a sum of compositions of secondary lst operators. More exactly the following theorem holds.

THEOREM 4.2.1. Let $\Delta \in Э_{k}(\mathbb{9})$. Then there exists a finite set of evolution differentiations $\ni_{\mathscr{H}_{1,1}}, \ldots, \ni_{\mathscr{\varphi}_{k(1), 1}} ; \ldots ; \ni_{\mathscr{\mathscr { L } _ { 1 , l }}}, \ldots, \ni_{\mathscr{H}_{k(0), l}}$ for any canonical chart W any positive integer r such that the restriction $\Delta \mid F_{r}(\mathbb{T})$ of Δ is presentable on W in the form

$$
\Delta\left|F_{r}(\pi)=\sum_{s=1}^{l} Э_{\mathscr{S}_{1, s}} \circ \ldots \circ Э_{\mathscr{S}_{k(s), s}}\right| F_{r}(\pi)
$$

Proof. First we will prove for any homogeneous secondary operator

$$
\Delta=\sum_{\substack{i_{1}, \ldots, i_{k} \\ \sigma_{1} \ldots, c_{k}}} a_{\sigma_{1} \ldots \sigma_{k}}^{i_{1} \ldots i_{k}} \frac{\partial}{\partial p_{\sigma_{1}}^{i_{1}} \ldots \partial p_{\sigma_{k}}^{i_{k}}}
$$

on W and any positive integer r there is a finite set of evolution differentiations $\ni_{\mathscr{S}_{1}}, \ldots, \ni_{\mathscr{P}_{L}}$ and a finite set of homogeneous ($k-1$)-th order secondary operators $\Delta_{1}, \ldots, \Delta_{L}$ such that

$$
\Delta\left|F_{r}(\mathbb{\|})=\operatorname{smbl}\left(\sum_{l=1}^{L} \ni_{\mathscr{S}_{l}} \circ \Delta_{l}\right)\right| F_{r}(\mathbb{\|})
$$

where smbl \square denotes the sum of all k-th order terms of \square.
Let $\Delta=Э_{\nabla}$, where $\nabla=\left(\nabla_{1}, \ldots, \nabla_{m}\right)$.

$$
\nabla_{i}=\sum_{\substack{i_{1}, \ldots, i_{k-1} \\ \sigma_{1}, \ldots, \sigma_{k-1}}} b_{\sigma_{1} \cdots \sigma_{k-1}}^{i_{1} \ldots i_{k-1} i} \frac{\partial^{k-1}}{\partial p_{\sigma_{1}}^{i_{1}} \ldots \partial p_{\sigma_{k-1}}^{i_{k-1}}}
$$

and

$$
\Delta \left\lvert\, F_{r}(\pi)=\sum_{\substack{\left|\sigma_{j}\right|<r \\ j=1,2, \ldots, k}} \sum_{\substack{i_{1}, \ldots, i_{k}}} a_{\sigma_{1} \ldots \sigma_{k}}^{i_{1} \ldots i_{k}} \frac{\partial^{k}}{\partial p_{\sigma_{1}}^{i_{1}} \ldots \partial p_{\sigma_{k}}^{i_{k}}}\right.
$$

Remark 3 of n. 2.4 implies that coefficients $a_{\sigma_{1} \ldots \sigma_{k}}^{i_{1} \ldots i_{k}},\left|\sigma_{j}\right| \leqslant r j=1,2, \ldots, k$ are uniquely defined by the coefficients of generating operators $b_{\sigma_{1} \ldots \sigma_{k-1}}^{i_{1} \ldots i_{k-1} i},\left|\sigma_{j}\right| \leqslant 2 r$, $j=1,2, \ldots, k-1$. For coincidence of two operators from $\ni_{k}(\mathbb{I})$ on $F_{r}(\mathbb{I})$ it suffices that their generating operators coincide on $F_{2 r}(\mathbb{I})$.

Let $\Delta_{1}=\exists_{\nabla_{l}}$, where $\nabla_{l}=\left(\nabla_{l, 1}, \ldots, \nabla_{l, m}\right)$ and

$$
\nabla_{l, i}=\sum_{\substack{i_{1}, \ldots, i_{k-2} \\ \sigma_{1}, \ldots, \sigma_{k-2}}} X_{l}^{i_{1} \ldots i_{k-2} i^{i}} \frac{\partial^{k-2}}{\partial p_{\sigma_{1}}^{i_{1}} \ldots \partial p_{\sigma_{k-2}}^{i_{k-2}}} ; \mathscr{S}_{l}=\left(\mathscr{S}_{l, 1}, \ldots, \mathscr{S}_{l, m}\right), l=1,2, \ldots, L
$$

Then

$$
\Delta\left|F_{r}(\mathbb{q})=\operatorname{smbl} \sum_{l=1}^{L}\left(Э_{\mathscr{S}_{l}} \circ \Delta_{l}\right)\right| F_{r}(\mathbb{q}),
$$

if coefficients of operators Δ_{l} and functions \mathscr{S}_{l} satisfy equations

$$
\begin{align*}
& \sum_{l=1}^{L} D_{\sigma_{1}}\left(\mathscr{S}_{l, i_{1}}\right){\underset{l}{\sigma_{2} \ldots \sigma_{k-1}}}_{i_{1 \ldots i_{k-1} i} i}^{i_{1}}=b_{\sigma_{1} \ldots \sigma_{k-1}}^{i_{1} \ldots i_{k-1}} i \tag{4.2.1}\\
& \left|\sigma_{1}\right|, \ldots,\left|\sigma_{k-1}\right| \leqslant 2 r ; \quad i_{1}, \ldots, i_{k-1}, \quad i=1,2, \ldots, m .
\end{align*}
$$

Then we rewrite (4.2.1) in the following form

$$
\begin{equation*}
\sum_{l=1}^{L} \lambda_{l}^{\left(i_{1}, \sigma_{1}\right)} \cdot X_{l}=b^{\left(i_{1}, \sigma_{1}\right)} \tag{4.2.2}
\end{equation*}
$$

where $\lambda_{l}^{\left(i_{1}, \sigma_{1}\right)}=D_{\sigma_{1}}\left(\mathscr{S}_{l, i_{1}}\right), X_{l}=X_{l}^{\sigma_{2} \ldots \sigma_{k-1}} i_{2}, b^{\left(i_{1}, \sigma_{1}\right)}=b_{\sigma_{1} \sigma_{2} \ldots \sigma_{k-1}}^{i_{1} i_{2} \ldots i_{k-1} i}$. Let us consider the system (4.2.2) as a system of linear algebraic equations with respect to the unknows X_{l}. Choose a number L and functions $\mathscr{S}_{l, i_{1}}$ so that the matrix of (4.2.2) were square and $\operatorname{det}\left(\lambda_{l}^{\left(i_{1}, \sigma_{1}\right)}\right) \neq 0$ (Then there exist solutions X_{l} for any right hand side $b^{\left(i_{1}, \sigma_{1}\right)}$). For this purpose we order lexicographically the set of multiindices $\left(i_{1}, \sigma_{1}\right), i_{1}=1,2, \ldots, m,\left|\sigma_{1}\right| \leqslant 2 r$ and assume that it is a range of values of the index l. Rearrange the equations in (4.2.2) in lexicographic order of the free terms $b^{\left(i_{1}, \sigma_{1}\right)}$. Arrange the summands in the left hand sides are according to the lexicographic order of the unknowns $X_{(i, \sigma)}, l=(i, \sigma)$. To verify the condition
$\operatorname{det}\left(\lambda_{(i, \sigma)}^{\left(i_{1}, \sigma_{1}\right)}\right) \neq 0$ choose functions $\lambda_{(i, \sigma)}^{\left(i_{1}, \sigma_{1}\right)}$ so that the matrix $\left(\lambda_{(i, \sigma)}^{\left(i_{1}, \sigma_{1}\right)}\right)$ were lowertriangular with units on the main diagonal (here (i_{1}, σ_{1}) is a number of a row, (i, σ) is a number of a column). For this it sufficies to set

$$
\mathscr{S}_{(i, \sigma), i}=\left\{\begin{array}{l}
q_{\sigma}, \text { if } i=i_{1}, \text { where } q_{\sigma}=q_{1}^{j_{1}} \cdot \ldots \cdot q_{n}^{j_{n}}, \sigma=\left(j_{1}, \ldots, j_{n}\right) \\
0, \text { if } i \neq i_{1} .
\end{array}\right.
$$

This proves our statement.
Now, return to the proof of the theorem, which we finish by induction in the order of Δ. The statement of the theorem is trivial for operators $\Delta_{1} \in Э_{1}(\mathbb{I})$. Suppose it is true for all operators $\Delta_{i} \in Э_{i}(\mathbb{I}), i<k$. Consider an operator $\Delta_{k} \in$ $\in \ni_{k}(\mathbb{1})$. On W, it is presentable in the form

$$
\Delta_{k}=\operatorname{smbl} \Delta_{k}+\Delta_{k-1}
$$

where $\triangle_{k-1} \in Э_{k-1}(\mathbb{\Psi})$. For any positive integer r there exist operators $Э_{\mathscr{H}_{l}} \in Э_{1}(\mathbb{I})$ and $\square_{l} \in Э_{k-1}(9)$ such that

$$
\operatorname{smbl} \Delta_{k}\left|F_{r}(\mathbb{q})=\operatorname{smbl}\left(\sum_{l=1}^{L} \ni_{\mathscr{L}_{l}} \circ \square_{l}\right)\right| F_{r}(\mathbb{q})
$$

Therefore

$$
\begin{aligned}
\Delta_{k} F_{r}(\mathbb{I}) & =\left(\sum_{l=1}^{L} \ni_{\mathscr{S}_{l}} \circ \square_{l}-\left(\sum_{l=1}^{L} \ni_{\mathscr{C}_{l}} \circ \square_{l}-\right.\right. \\
& \left.\left.-\operatorname{smbl}\left(\sum_{l=1}^{L} \ni_{\mathscr{S}_{l}} \circ \square_{l}\right)\right)+\Delta_{k-1} \mid F_{r}(\mathbb{\top}),\right)
\end{aligned}
$$

where

$$
\sum_{l=1}^{L} \ni_{\mathscr{S}_{l}} \circ \square_{l}-\operatorname{smbl}\left(\sum_{l=1}^{L} \ni_{\mathscr{S}_{l}} \circ \square_{l}\right) \in Э_{k-1}(\Upsilon)
$$

This formula and inductive hypothesis imply the statement of the theorem for operators from $\ni_{k}(\mathbb{\top})$.

§5. FREE COEFFICIENTS OF A SECONDARY OPERATOR

5.1. As it was noted in n. 2.4, the coefficients $a_{\sigma_{1} \ldots \sigma_{s}}^{i_{1} \ldots i_{s}}$ of the secondary operator
\exists_{∇} are expressed by recursive formula (2.4.5) in terms of coefficients $a_{\sigma_{1} \ldots o_{s-1} 0}^{i_{1} \ldots i_{s-1} i}$ of the generating operator ∇. The latter are independent in general case, i.e. there are no relations between them. Hence to determine the operator $Э_{\nabla}$ in general case it is necessary to define all the coefficients of the generating operator.

If coefficients of $Э_{\nabla}$ are symmetric, then the expressions of coefficients $a_{o_{1} \ldots \sigma_{r} \ldots \sigma_{s}}^{i_{1} \ldots i_{r} \ldots i_{s}}, r=1,2, \ldots, s-1$ in terms of coefficients of the generating operator are the relations between the latter ones, because $a_{\sigma_{1} \ldots 0 \ldots \sigma_{s}}^{i_{1} \ldots i_{r} \ldots i_{s}}=a_{\sigma_{1} \ldots \sigma_{r-1}}^{i_{1} \ldots i_{r+1} \ldots \sigma_{s}} i^{\sigma_{r}}$ due to symmetricity. These relations are hint to existence of a family of independent coefficients of the generating operator in terms of which all the other coefficients of ∇, hence all the other coefficients of \ni_{∇} are expressed.

DEFINITION. A family of coefficients of the secondary operator \ni_{∇} is a family of free generators, if the coefficients of this family are independent and all the other coefficients of \ni_{∇} are expressed in terms of them.
5.2. Now, give a constructive method of choosing families of free generators for an operator ξ_{∇} with symmetric coefficients.

First, note that in general case symmetric coefficients of \ni_{∇} satisfy no conditions except (2.4.4). Rewrite these conditions in the following form

$$
\begin{equation*}
\sum_{r=1}^{s} a_{\sigma_{1} \ldots \sigma_{r}+1_{j} \ldots \sigma_{s}}^{i_{1} \ldots i_{j} \ldots i_{s}}=D_{j}\left(a_{\sigma_{1} \ldots \sigma_{s}}^{i_{1} \ldots i_{s}}\right) \tag{5.2.1}
\end{equation*}
$$

for $s=1,2, \ldots, k ; j=1,2, \ldots, n ; i_{1}, \ldots, i_{s}=1,2, \ldots, m$; and any $\sigma_{1}, \ldots, \sigma_{s}$.
Since relations (5.2.1) connect only coefficients of the same homogeneous component \ni_{∇}, the search for a family of free generators of \ni_{∇} is reduced to that for each of its homogeneous components. Since each homogeneous component of \exists_{∇} is a secondary operator, in what follows we will seek free generators for an homogeneous secondary operator with symmetric coefficients

$$
\ni_{\nabla}=\sum_{\substack{i_{1} \ldots, i_{k} \\ \sigma_{1}, \ldots, \sigma_{k}}} a_{\sigma_{1} \ldots \sigma_{k}}^{i_{1} \ldots i_{k}} \frac{\partial^{k}}{\partial p_{\sigma_{1}}^{i_{1}} \ldots \partial p_{\sigma_{k}}^{i_{k}}}
$$

(The case $k=1$ is clear).
Since coefficients $a_{\sigma_{1} \ldots o_{k}}^{i_{1} \ldots i_{k}}$ are symmetric, we will always assume that «two--storeyed» multiindices $\binom{i}{\sigma}$ in these coefficients are arranged in decreasing lexicographic order, i.e. $\binom{i_{1}}{\sigma_{1}} \geqslant\binom{ i_{2}}{\sigma_{2}} \geqslant \ldots \geqslant\binom{ i_{k}}{\sigma_{k}}$ (Here $\binom{i_{r}}{\sigma_{r}} \geqslant\binom{ i_{r+1}}{\sigma_{r+1}}$ if and
only if $\left(i_{r}, i_{r 1}, \ldots, i_{r n}\right) \geqslant\left(i_{r+1}, i_{r+1,1}, \ldots, i_{r+1, n}\right)$ with respect to the lexicographic order).

The coefficients $a_{\sigma_{1} \ldots o_{k}}^{i_{1} \ldots i_{k}}$ with $\left|\sigma_{1}\right|+\ldots+\left|\sigma_{k}\right|=R$ are refered to as coefficients of level R.

Consider each of the relations (5.2.1) as a linear algebraic equation for coefficients $a_{\sigma_{1}+1_{j} \ldots \sigma_{k}}^{i_{1} \ldots i_{k}}, \ldots, a_{\sigma_{1} \ldots o_{k}+1_{j}}^{i_{1} \ldots i_{k}}$ of level $R+1=\left|\sigma_{1}\right|+\ldots+\left|\sigma_{k}\right|+1$ generated by coefficeints $a_{\sigma_{1} \ldots \sigma_{k}}^{i_{1} \ldots i_{k}}$ of level R. Thus coefficients of level $R+1$ are strained by the system (5.2.1) of linear algebraic equations generated by coefficients of level R. No other constraints are imposed on coefficients of level $R+1$, in general.

Free unknowns of this linear system are called free generators of level $R+1$.
Further, by induction in R we get that the union of free generators of all levels is a family of free generators for the homogeneous operator \ni_{∇}. At the inductive step all the coefficients $a_{0 \ldots 0}^{i_{1} \ldots i_{k}}$ of level 0 are supposed to be free.

Note that free generators of each level may be chosen that they were coefficients of a generating operator.
5.3. Now, illustrate the said in n. 5.2 by the detailed analysis for $n=1$. In this case the homogeneous operator \ni_{∇} is expressed in the form

$$
\ni_{\nabla}=\sum_{\substack{i_{1}, \ldots, i_{k} \\ j_{1}, \ldots, j_{k}}} a_{j_{1} \ldots i_{k}}^{i_{1} \ldots i_{k}} \frac{\partial^{k}}{\partial p_{j_{1}}^{i_{1}} \ldots \partial p_{i_{k}}^{i_{k}}}, \quad k \geqslant 2,
$$

and relations (5.2.1) are of the form

$$
\begin{align*}
& \sum_{r=1}^{k} a_{j_{1} \ldots i_{r}+1 \ldots j_{k}}^{i_{1} \ldots i_{r} \ldots i_{k}}=D\left(a_{j_{1} \ldots i_{k}}^{i_{1} \ldots i_{k}}\right) \tag{5.3.1}\\
& i_{1}, \ldots, i_{k}=1,2, \ldots, m ; j_{1}, \ldots, j_{k}=1,2, \ldots
\end{align*}
$$

Since multiindices $\binom{i_{r}}{i_{r}}, r=1,2, \ldots, k$, are arranged in the decreasing lexicographic order in each coefficient $a_{j_{1} \ldots j_{k}}^{i_{1} \ldots i_{k}}$, then there there is the same set of top indices $i_{1} \geqslant i_{2} \geqslant \ldots \geqslant i_{k}$ in any term of (5.3.1). Therefore the system of linear equations (5.3.1) generated by all coefficients of level R splits into subsystems $S_{R}^{i_{1} \ldots i_{k}}$ each of which connects coefficients of level $R+1$ with the same set of top indices $i_{1} \geqslant \ldots \geqslant i_{k}$. Hence we must study an arbitrary subsystem of the form $S_{R+1}^{i_{1} \ldots i_{k}}$.

Reduce the system $S_{R+1}^{i_{1} \ldots i_{k}}$ to triangular form. For this arrange the unknowns
$a_{j_{1} \ldots i_{k}}^{i_{1} \ldots i_{k}}$ in each equation in accordance with the decreasing lexicographic order of their multiindices $\left(j_{1}, \ldots, j_{k}\right)$, i.e. we put the unknown $a_{j_{1} \ldots j_{k}}^{i_{1} \ldots i_{k}}$ to the left of the unknown $a_{l_{1} \ldots l_{k}}^{i_{1} \ldots i_{k}}$ if $\left(j_{1}, \ldots, j_{k}\right)>\left(l_{1}, \ldots, l_{k}\right)$ with respect to the lexicographic order, and arrange equations of this system in accordance with the decreasing lexicographic order of multiindices $\left(j_{1}, \ldots, j_{k}\right)$ of free terms $D\left(a_{j_{1} \ldots j_{k}}^{i_{1} \ldots i_{k}}\right)$.

LEMMA5.3.1. A system of linear equations $S_{R+1}^{i_{1} \ldots i_{k}}$ with indicated ordering of equations and the unknowns is of the triangular form.

Proof. Consider two neighbour equations of the system $S_{R+1}^{i_{1} \ldots i_{k}}$

$$
a_{j_{1}+1 j_{2} \ldots j_{k}}^{i_{1} i_{2} \ldots i_{k}}+\ldots=D\left(a_{i_{1} \cdots j_{k}}^{i_{1} \cdots i_{k}}\right)
$$

and

$$
a_{l_{1}+1 l_{2} \ldots l_{k}}^{i_{1} i_{2} \ldots i_{k}}+\ldots=D\left(a_{l_{1} \ldots l_{k}}^{i_{1} \ldots i_{k}}\right)
$$

Since $\left(j_{1}, j_{2}, \ldots, j_{k}\right)>\left(l_{1}, l_{2}, \ldots, l_{k}\right)$, then $\left(j_{1}+1, j_{2}, \ldots, j_{k}\right)>\left(l_{1}+1, l_{2}, \ldots, l_{k}\right)$.

COROLLARY 1. The main unknowns in the triangular system $S_{R+1}^{i_{1} \ldots i_{k}}$ are $a_{j_{1} j_{2} \ldots j_{k}}^{i_{1} i_{2} \ldots i_{k}}$ such that

$$
\binom{i_{1}}{j_{1}-1} \geqslant\binom{ i_{2}}{i_{2}}
$$

Proof. Let the coefficient $a_{j_{1} \ldots j_{k}}^{i_{1} \ldots i_{k}}$ satisfy $\binom{i_{1}}{j_{1}-1} \geqslant\binom{ i_{2}}{j_{2}}$. Then it is the first in the equation

$$
a_{j_{1} j_{2} \cdots j_{k}}^{i_{1} i_{2} \cdots i_{k}}+\ldots=D\left(a_{i_{1}-1 j_{2} \ldots j_{k}}^{i_{1} i_{2} \cdots i_{k}}\right)
$$

of the triangular system $S_{R+1}^{i_{1} \ldots i_{k}}$, i.e., it is a main unknown. And vice versa.
COROLLARY 2. Free unknowns of the triangular system $S_{R+1}^{i_{1} \ldots i_{k}}$ are the unknowns $a_{j_{1} \ldots i_{k}}^{i_{1}, \ldots i_{k}}$, which satisfy one of the following conditions:

1) $i_{1}>i_{2}$ and $i_{1}=0$;
2) $i_{1}=i_{2}$ and $j_{1}=j_{2}$

Proof. $\binom{i_{1}}{i_{1}-1} \geqslant\binom{ i_{2}}{i_{2}}$ fails if and only if either $i_{1}>i_{2}$ and $j_{1}=0$ or $i_{1}=i_{2}$ and $j_{1}=j_{2}$.

Thus we get

THEOREM 5.3.1. Let $n=1$ and \exists_{∇} be a homogeneous secondary operator with symmetric coefficients. Then the family of its coefficients $a_{j_{1} j_{2} \ldots i_{k}}^{i_{1} i_{2}}$ is a family of free generators if they satisfy one of the following conditions:

1) $i_{1}>i_{2}$ and $j_{1}=0$;
2) $i_{1}=i_{2}$ and $j_{1}=j_{2}$.

Now, choose a family of free generators of \exists_{∇} so that its elements were coefficients of the generating operator ∇. For this denote by A a family of free unknowns of $S_{R+1}^{i_{1} \ldots i_{k}}$ obtianed in Corollary 2 of Lemma 5.3.1. Then fix a positive integer s and consider elements $a_{j_{1} \ldots j_{k}}^{i_{1} \cdots i_{k}} \in A$ with $j_{k}>s$. Transfer $j_{k}-s$ units from the index j_{k} of each of these elements in an arbitrary way into $k-1$ first indices $j_{1}, j_{2}, \ldots, j_{k-1}$ of this element. Denote by A_{s} the set of elements obtained in this way.

LEMMA 5.3.2. For any s the elements of A_{s} are expressed in terms of elements of A_{0} via the equations of the system $S_{R+1}^{i_{1} \ldots i_{k}}$.

Proof. The lemma is proved by induction in s. The first step of induction, $s=0$, is trivial. Suppose that elements of the families $A_{1}, A_{2}, \ldots, A_{s}$ are expressed in terms of elements of A_{0}. Due to (5.3.1)

$$
\sum_{r=1}^{k-1} a_{j_{1} \cdots i_{r}+1 \ldots j_{k-1}}^{i_{1} \cdots i_{r}+i_{k-1} i_{k}} s+a_{j_{1} \cdots j_{k-1}}^{i_{1} \ldots i_{k-1}} i_{k+1}=D\left(a_{j_{1} \cdots j_{k-1}}^{i_{1} \ldots i_{k-1}} i_{k}\right),
$$

where $a_{j_{1} \ldots j_{r}+1 \ldots j_{k-1}}^{i_{1} \ldots i_{r} \ldots i_{k-1} i_{k}}$ belong to $A_{s}, 1 \leqslant r \leqslant k-1$ and therefore are expressed in terms of elements of A_{0}. Hence $a_{j_{1} \cdots j_{k-1} S+1}^{i_{1} \ldots i_{k-1} i_{k}}$ is expressed in terms of elements of A_{0}.

COROLLARY. Elements of A are expressed in terms of elements of A_{0}.

LEMMA 5.3.3.

$$
A_{0}=\left\{a_{j_{1}+j_{k} j_{2} \ldots i_{k-1}}^{i_{1} i_{2} \ldots i_{k-1} i_{k}} \mid a_{j_{1} j_{2} \cdots j_{k-1} j_{k}}^{i_{1} i_{2} \ldots i_{k-1} i_{k}} \in A\right\} .
$$

Proof. Let $a_{l_{1} \ldots l_{k-1}}^{i_{1} \ldots i_{k}-1} i_{k} \in A_{0}$. If $i_{1}>i_{2}$ then this element is recovered from the element $a_{0 l_{2} \ldots l_{1}}^{i_{1} i_{2} \ldots i_{k}} \in A$ by transferring all the units of the last lower index to the first lower index. If $i_{1}=i_{2}$ then this element is recovered from $a_{l_{2} l_{2} \ldots l_{1}-l_{2}}^{i_{1} i_{2} \ldots i_{k}} \in A$
in the same way.
Thus we may take elements of A_{0} as free unknowns in the system $S_{R+1}^{i_{1} \ldots i_{k}}$.
COROLLARY. $a_{l_{1} l_{2} \ldots i_{k-1} 0}^{i_{1} i_{2} \ldots i_{k-1} i_{k}} \in A_{0}$ if and only if it satisfies one of the following conditions:

1) $i_{1}>i_{2}$ and $\binom{i_{k-1}}{l_{k-1}} \geqslant\binom{ i_{k}}{l_{1}}$;
2) $i_{1}=i_{2}$ and $\binom{i_{k-1}}{l_{k-1}} \geqslant\binom{ i_{k}}{l_{1}-l_{2}}$.

Thus we have

THEOREM 5.3.2. Let $n=1$ and \exists_{∇} be a homogeneous secondary operator with symmetric coefficients. Then the family of its coefficients $a_{j_{1} \ldots j_{k-1} 0}^{i_{1} \ldots i_{k-1}} i_{k}$ satisfying one of the conditions:

1) $i_{1}>i_{2}$ and $\binom{i_{k-1}}{i_{k-1}} \geqslant\binom{ i_{k}}{i_{1}}$;
2) $i_{1}=i_{2}$ and $\binom{i_{k-1}}{i_{k-1}} \geqslant\binom{ i_{k}}{i_{1}-j_{2}}$
is a family of free generators.
5.4. We obtained the following results by the same reasoning as in n.n. 5.2 and 5.3.

THEOREM 5.4.1. Suppose

$$
\ni_{\nabla}=\sum_{\substack{i_{1}, \ldots, i_{k} \\ \sigma_{1}, \ldots, c_{k}}} a_{\substack{\sigma_{1} \cdots \sigma_{k}}}^{i_{1} \ldots i_{k}} \frac{\partial^{k}}{\partial p_{\sigma_{1}}^{i_{1}} \ldots \partial p_{\sigma_{k}}^{i_{k}}}
$$

is a homogeneous secondary operator with symmetric coefficients. Then

1. If $n=2, k>2$, then the family of its coefficients $a_{\sigma_{1} \ldots \sigma_{k}}^{i_{1} \ldots i_{k}}$ satisfying one of the following conditions:
a) $i_{1}>i_{2}, \sigma_{1}=(0,0)$;
b) $i_{1}=i_{2}, \sigma_{1}=(i+1,0), \sigma_{2}=(i, 2 j+1)$, where $i, j=0,1,2, \ldots$;
c) $i_{1}=i_{2}, \sigma_{1}=(i+1,0) ; \quad \sigma_{2}=(i, 2 j), \quad \sigma_{3}>(i, j)$, where $i, j=0,1,2, \ldots$;
d) $i_{1}=i_{2}, \sigma_{1}=\sigma_{2}$
is a family of free generators.
II. If $n>2$ and $k=2$, then the family of coefficients $a_{\sigma_{1 \sigma_{2}}}^{i_{1} i_{2}}$ of \ni_{∇} satisfying one of the following conditions:
a) $i_{1}>i_{2}, \sigma_{1}=(0,0, \ldots, 0)$;
b) $i_{1}=i_{2}, \sigma_{1}=(\tau, i+1,0, \ldots, 0), \sigma_{2}=(\tau, i, \delta)$, where τ, δ are multiindices and $|\delta|$ is odd;
c) $i_{1}=i_{2}, \sigma_{1}=\sigma_{2}$ is a family of free generators.

In general, the direct analysis of the system of linear equations connecting coefficients of the same level is very difficult and cumbersome. We intend to return elsewhere to the problem of finding free generators of secondary operators starting from another arguments.

REFERENCES

[1] A.M. Vinogradov, Category of Differential Equations and its Significance - Proceedings of International Conference on Global Differential Geometry and Applications, Nove Mesto na Morave, CSSR, September, 1983.
[2] A.M. Vinogradov, The Category of Non-Linear Differential Equations, In: Eqautions on Manifolds, Voronezh State Univ., Veronezh, 1982, pp. 26-51 (Russian; English translation in to appear in Lect. Notes Math., 1985).
[3] A.M. Vinogradov, The Geometry of Non-Linear Differential Equations, Itogi Nauki i Tekhniki (VINITI, Ser. Problemy Geometrii), 11 (1980), 89-134 (Russian).
[4] A.M. Vinogradov, V.N. Gusyatnikova, V.A. Yumaguzhin, Secondary Differential Operators, Dokl. Akad. Nauk SSSR, 1985, vol. 283, N. 4, pp. 801-805.
[5] A.M. Vinogradov, The C-Spectral Sequence, Lagrangian Formalism and Conservation Laws I, II, Journal of Mathematical Analysis and Applications, vol. 100, N. 1, 1984, 1-129.
[6] F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups, Gordon \& Breach, N. Y., 1978.

Manuscript received: June 25, 1985.

